update pay ui

This commit is contained in:
2025-12-09 08:31:18 +08:00
parent e4937c2719
commit 25492caf15
26 changed files with 15577 additions and 1061 deletions

501
ml/prepare_data.py Normal file
View File

@@ -0,0 +1,501 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
数据准备脚本 - 为 Transformer Autoencoder 准备训练数据
从 ClickHouse 提取历史分钟数据,计算以下特征:
1. alpha - 超额收益(概念涨幅 - 大盘涨幅)
2. alpha_delta - Alpha 变化率5分钟
3. amt_ratio - 成交额相对均值(当前/过去20分钟均值
4. amt_delta - 成交额变化率
5. rank_pct - Alpha 排名百分位
6. limit_up_ratio - 涨停股占比
输出按交易日存储的特征文件parquet格式
"""
import os
import sys
import numpy as np
import pandas as pd
from datetime import datetime, timedelta, date
from sqlalchemy import create_engine, text
from elasticsearch import Elasticsearch
from clickhouse_driver import Client
import hashlib
import json
import logging
from typing import Dict, List, Set, Tuple
from concurrent.futures import ThreadPoolExecutor, as_completed
import warnings
warnings.filterwarnings('ignore')
# ==================== 配置 ====================
MYSQL_ENGINE = create_engine(
"mysql+pymysql://root:Zzl5588161!@192.168.1.5:3306/stock",
echo=False
)
ES_CLIENT = Elasticsearch(['http://127.0.0.1:9200'])
ES_INDEX = 'concept_library_v3'
CLICKHOUSE_CONFIG = {
'host': '127.0.0.1',
'port': 9000,
'user': 'default',
'password': 'Zzl33818!',
'database': 'stock'
}
# 输出目录
OUTPUT_DIR = os.path.join(os.path.dirname(__file__), 'data')
os.makedirs(OUTPUT_DIR, exist_ok=True)
# 特征计算参数
FEATURE_CONFIG = {
'alpha_delta_window': 5, # Alpha变化窗口分钟
'amt_ma_window': 20, # 成交额均值窗口(分钟)
'limit_up_threshold': 9.8, # 涨停阈值(%
'limit_down_threshold': -9.8, # 跌停阈值(%
}
REFERENCE_INDEX = '000001.SH'
# ==================== 日志 ====================
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# ==================== 工具函数 ====================
def get_ch_client():
return Client(**CLICKHOUSE_CONFIG)
def generate_id(name: str) -> str:
return hashlib.md5(name.encode('utf-8')).hexdigest()[:16]
def code_to_ch_format(code: str) -> str:
if not code or len(code) != 6 or not code.isdigit():
return None
if code.startswith('6'):
return f"{code}.SH"
elif code.startswith('0') or code.startswith('3'):
return f"{code}.SZ"
else:
return f"{code}.BJ"
# ==================== 获取概念列表 ====================
def get_all_concepts() -> List[dict]:
"""从ES获取所有叶子概念"""
concepts = []
query = {
"query": {"match_all": {}},
"size": 100,
"_source": ["concept_id", "concept", "stocks"]
}
resp = ES_CLIENT.search(index=ES_INDEX, body=query, scroll='2m')
scroll_id = resp['_scroll_id']
hits = resp['hits']['hits']
while len(hits) > 0:
for hit in hits:
source = hit['_source']
stocks = []
if 'stocks' in source and isinstance(source['stocks'], list):
for stock in source['stocks']:
if isinstance(stock, dict) and 'code' in stock and stock['code']:
stocks.append(stock['code'])
if stocks:
concepts.append({
'concept_id': source.get('concept_id'),
'concept_name': source.get('concept'),
'stocks': stocks
})
resp = ES_CLIENT.scroll(scroll_id=scroll_id, scroll='2m')
scroll_id = resp['_scroll_id']
hits = resp['hits']['hits']
ES_CLIENT.clear_scroll(scroll_id=scroll_id)
logger.info(f"获取到 {len(concepts)} 个概念")
return concepts
# ==================== 获取交易日列表 ====================
def get_trading_days(start_date: str, end_date: str) -> List[str]:
"""获取交易日列表"""
client = get_ch_client()
query = f"""
SELECT DISTINCT toDate(timestamp) as trade_date
FROM stock_minute
WHERE toDate(timestamp) >= '{start_date}'
AND toDate(timestamp) <= '{end_date}'
ORDER BY trade_date
"""
result = client.execute(query)
days = [row[0].strftime('%Y-%m-%d') for row in result]
logger.info(f"找到 {len(days)} 个交易日: {days[0]} ~ {days[-1]}")
return days
# ==================== 获取单日数据 ====================
def get_daily_stock_data(trade_date: str, stock_codes: List[str]) -> pd.DataFrame:
"""获取单日所有股票的分钟数据"""
client = get_ch_client()
# 转换代码格式
ch_codes = []
code_map = {}
for code in stock_codes:
ch_code = code_to_ch_format(code)
if ch_code:
ch_codes.append(ch_code)
code_map[ch_code] = code
if not ch_codes:
return pd.DataFrame()
ch_codes_str = "','".join(ch_codes)
query = f"""
SELECT
code,
timestamp,
close,
volume,
amt
FROM stock_minute
WHERE toDate(timestamp) = '{trade_date}'
AND code IN ('{ch_codes_str}')
ORDER BY code, timestamp
"""
result = client.execute(query)
if not result:
return pd.DataFrame()
df = pd.DataFrame(result, columns=['ch_code', 'timestamp', 'close', 'volume', 'amt'])
df['code'] = df['ch_code'].map(code_map)
df = df.dropna(subset=['code'])
return df[['code', 'timestamp', 'close', 'volume', 'amt']]
def get_daily_index_data(trade_date: str, index_code: str = REFERENCE_INDEX) -> pd.DataFrame:
"""获取单日指数分钟数据"""
client = get_ch_client()
query = f"""
SELECT
timestamp,
close,
volume,
amt
FROM index_minute
WHERE toDate(timestamp) = '{trade_date}'
AND code = '{index_code}'
ORDER BY timestamp
"""
result = client.execute(query)
if not result:
return pd.DataFrame()
df = pd.DataFrame(result, columns=['timestamp', 'close', 'volume', 'amt'])
return df
def get_prev_close(stock_codes: List[str], trade_date: str) -> Dict[str, float]:
"""获取昨收价"""
valid_codes = [c for c in stock_codes if c and len(c) == 6 and c.isdigit()]
if not valid_codes:
return {}
codes_str = "','".join(valid_codes)
query = f"""
SELECT SECCODE, F002N
FROM ea_trade
WHERE SECCODE IN ('{codes_str}')
AND TRADEDATE = (
SELECT MAX(TRADEDATE) FROM ea_trade WHERE TRADEDATE < '{trade_date}'
)
AND F002N IS NOT NULL AND F002N > 0
"""
try:
with MYSQL_ENGINE.connect() as conn:
result = conn.execute(text(query))
return {row[0]: float(row[1]) for row in result if row[1]}
except Exception as e:
logger.error(f"获取昨收价失败: {e}")
return {}
def get_index_prev_close(trade_date: str, index_code: str = REFERENCE_INDEX) -> float:
"""获取指数昨收价"""
code_no_suffix = index_code.split('.')[0]
try:
with MYSQL_ENGINE.connect() as conn:
result = conn.execute(text("""
SELECT F006N FROM ea_exchangetrade
WHERE INDEXCODE = :code AND TRADEDATE < :today
ORDER BY TRADEDATE DESC LIMIT 1
"""), {'code': code_no_suffix, 'today': trade_date}).fetchone()
if result and result[0]:
return float(result[0])
except Exception as e:
logger.error(f"获取指数昨收失败: {e}")
return None
# ==================== 计算特征 ====================
def compute_daily_features(
trade_date: str,
concepts: List[dict],
all_stocks: List[str]
) -> pd.DataFrame:
"""
计算单日所有概念的特征
返回 DataFrame:
- index: (timestamp, concept_id)
- columns: alpha, alpha_delta, amt_ratio, amt_delta, rank_pct, limit_up_ratio
"""
# 1. 获取数据
logger.info(f" 获取股票数据...")
stock_df = get_daily_stock_data(trade_date, all_stocks)
if stock_df.empty:
logger.warning(f" 无股票数据")
return pd.DataFrame()
logger.info(f" 获取指数数据...")
index_df = get_daily_index_data(trade_date)
if index_df.empty:
logger.warning(f" 无指数数据")
return pd.DataFrame()
# 2. 获取昨收价
logger.info(f" 获取昨收价...")
prev_close = get_prev_close(all_stocks, trade_date)
index_prev_close = get_index_prev_close(trade_date)
if not prev_close or not index_prev_close:
logger.warning(f" 无昨收价数据")
return pd.DataFrame()
# 3. 计算股票涨跌幅和成交额
stock_df['prev_close'] = stock_df['code'].map(prev_close)
stock_df = stock_df.dropna(subset=['prev_close'])
stock_df['change_pct'] = (stock_df['close'] - stock_df['prev_close']) / stock_df['prev_close'] * 100
# 4. 计算指数涨跌幅
index_df['change_pct'] = (index_df['close'] - index_prev_close) / index_prev_close * 100
index_change_map = dict(zip(index_df['timestamp'], index_df['change_pct']))
# 5. 获取所有时间点
timestamps = sorted(stock_df['timestamp'].unique())
logger.info(f" 时间点数: {len(timestamps)}")
# 6. 按时间点计算概念特征
results = []
# 概念到股票的映射
concept_stocks = {c['concept_id']: set(c['stocks']) for c in concepts}
concept_names = {c['concept_id']: c['concept_name'] for c in concepts}
# 历史数据缓存(用于计算变化率)
concept_history = {cid: {'alpha': [], 'amt': []} for cid in concept_stocks}
for ts in timestamps:
ts_stock_data = stock_df[stock_df['timestamp'] == ts]
index_change = index_change_map.get(ts, 0)
# 股票涨跌幅和成交额字典
stock_change = dict(zip(ts_stock_data['code'], ts_stock_data['change_pct']))
stock_amt = dict(zip(ts_stock_data['code'], ts_stock_data['amt']))
concept_features = []
for concept_id, stocks in concept_stocks.items():
# 该概念的股票数据
concept_changes = [stock_change[s] for s in stocks if s in stock_change]
concept_amts = [stock_amt.get(s, 0) for s in stocks if s in stock_change]
if not concept_changes:
continue
# 基础统计
avg_change = np.mean(concept_changes)
total_amt = sum(concept_amts)
# Alpha = 概念涨幅 - 指数涨幅
alpha = avg_change - index_change
# 涨停/跌停股占比
limit_up_count = sum(1 for c in concept_changes if c >= FEATURE_CONFIG['limit_up_threshold'])
limit_down_count = sum(1 for c in concept_changes if c <= FEATURE_CONFIG['limit_down_threshold'])
limit_up_ratio = limit_up_count / len(concept_changes)
limit_down_ratio = limit_down_count / len(concept_changes)
# 更新历史
history = concept_history[concept_id]
history['alpha'].append(alpha)
history['amt'].append(total_amt)
# 计算变化率
alpha_delta = 0
if len(history['alpha']) > FEATURE_CONFIG['alpha_delta_window']:
alpha_delta = alpha - history['alpha'][-FEATURE_CONFIG['alpha_delta_window']-1]
# 成交额相对均值
amt_ratio = 1.0
amt_delta = 0
if len(history['amt']) > FEATURE_CONFIG['amt_ma_window']:
amt_ma = np.mean(history['amt'][-FEATURE_CONFIG['amt_ma_window']-1:-1])
if amt_ma > 0:
amt_ratio = total_amt / amt_ma
amt_delta = total_amt - history['amt'][-2] if len(history['amt']) > 1 else 0
concept_features.append({
'concept_id': concept_id,
'alpha': alpha,
'alpha_delta': alpha_delta,
'amt_ratio': amt_ratio,
'amt_delta': amt_delta,
'limit_up_ratio': limit_up_ratio,
'limit_down_ratio': limit_down_ratio,
'total_amt': total_amt,
'stock_count': len(concept_changes),
})
if not concept_features:
continue
# 计算排名百分位
concept_df = pd.DataFrame(concept_features)
concept_df['rank_pct'] = concept_df['alpha'].rank(pct=True)
# 添加时间戳
concept_df['timestamp'] = ts
results.append(concept_df)
if not results:
return pd.DataFrame()
# 合并所有时间点
final_df = pd.concat(results, ignore_index=True)
# 标准化成交额变化率
if 'amt_delta' in final_df.columns:
amt_delta_std = final_df['amt_delta'].std()
if amt_delta_std > 0:
final_df['amt_delta'] = final_df['amt_delta'] / amt_delta_std
logger.info(f" 计算完成: {len(final_df)} 条记录")
return final_df
# ==================== 主流程 ====================
def process_single_day(trade_date: str, concepts: List[dict], all_stocks: List[str]) -> str:
"""处理单个交易日"""
output_file = os.path.join(OUTPUT_DIR, f'features_{trade_date}.parquet')
# 检查是否已处理
if os.path.exists(output_file):
logger.info(f"[{trade_date}] 已存在,跳过")
return output_file
logger.info(f"[{trade_date}] 开始处理...")
try:
df = compute_daily_features(trade_date, concepts, all_stocks)
if df.empty:
logger.warning(f"[{trade_date}] 无数据")
return None
# 保存
df.to_parquet(output_file, index=False)
logger.info(f"[{trade_date}] 保存完成: {output_file}")
return output_file
except Exception as e:
logger.error(f"[{trade_date}] 处理失败: {e}")
import traceback
traceback.print_exc()
return None
def main():
import argparse
parser = argparse.ArgumentParser(description='准备训练数据')
parser.add_argument('--start', type=str, default='2022-01-01', help='开始日期')
parser.add_argument('--end', type=str, default=None, help='结束日期(默认今天)')
parser.add_argument('--workers', type=int, default=1, help='并行数建议1避免数据库压力')
args = parser.parse_args()
end_date = args.end or datetime.now().strftime('%Y-%m-%d')
logger.info("=" * 60)
logger.info("数据准备 - Transformer Autoencoder 训练数据")
logger.info("=" * 60)
logger.info(f"日期范围: {args.start} ~ {end_date}")
# 1. 获取概念列表
concepts = get_all_concepts()
# 收集所有股票
all_stocks = list(set(s for c in concepts for s in c['stocks']))
logger.info(f"股票总数: {len(all_stocks)}")
# 2. 获取交易日列表
trading_days = get_trading_days(args.start, end_date)
if not trading_days:
logger.error("无交易日数据")
return
# 3. 处理每个交易日
logger.info(f"\n开始处理 {len(trading_days)} 个交易日...")
success_count = 0
for i, trade_date in enumerate(trading_days):
logger.info(f"\n[{i+1}/{len(trading_days)}] {trade_date}")
result = process_single_day(trade_date, concepts, all_stocks)
if result:
success_count += 1
logger.info("\n" + "=" * 60)
logger.info(f"处理完成: {success_count}/{len(trading_days)} 个交易日")
logger.info(f"数据保存在: {OUTPUT_DIR}")
logger.info("=" * 60)
if __name__ == "__main__":
main()