agent功能开发增加MCP后端
This commit is contained in:
278
src/services/llmService.js
Normal file
278
src/services/llmService.js
Normal file
@@ -0,0 +1,278 @@
|
||||
// src/services/llmService.js
|
||||
// LLM服务层 - 集成AI模型进行对话和工具调用
|
||||
|
||||
import axios from 'axios';
|
||||
import { mcpService } from './mcpService';
|
||||
import { logger } from '../utils/logger';
|
||||
|
||||
/**
|
||||
* LLM服务配置
|
||||
*/
|
||||
const LLM_CONFIG = {
|
||||
// 可以使用 OpenAI、Claude、通义千问等
|
||||
provider: 'openai', // 或 'claude', 'qwen'
|
||||
apiKey: process.env.REACT_APP_OPENAI_API_KEY || '',
|
||||
apiUrl: 'https://api.openai.com/v1/chat/completions',
|
||||
model: 'gpt-4o-mini', // 更便宜的模型
|
||||
};
|
||||
|
||||
/**
|
||||
* LLM服务类
|
||||
*/
|
||||
class LLMService {
|
||||
constructor() {
|
||||
this.conversationHistory = [];
|
||||
}
|
||||
|
||||
/**
|
||||
* 构建系统提示词
|
||||
*/
|
||||
getSystemPrompt(availableTools) {
|
||||
return `你是一个专业的金融投资助手。你可以使用以下工具来帮助用户查询信息:
|
||||
|
||||
${availableTools.map(tool => `
|
||||
**${tool.name}**
|
||||
描述:${tool.description}
|
||||
参数:${JSON.stringify(tool.parameters, null, 2)}
|
||||
`).join('\n')}
|
||||
|
||||
用户提问时,请按照以下步骤:
|
||||
1. 理解用户的意图
|
||||
2. 选择合适的工具(可以多个)
|
||||
3. 提取工具需要的参数
|
||||
4. 调用工具后,用自然语言总结结果
|
||||
|
||||
回复格式:
|
||||
- 如果需要调用工具,返回JSON格式:{"tool": "工具名", "arguments": {...}}
|
||||
- 如果不需要工具,直接回复自然语言
|
||||
|
||||
注意:
|
||||
- 贵州茅台的股票代码是 600519
|
||||
- 涨停是指股票当日涨幅达到10%
|
||||
- 概念板块是指相同题材的股票分类`;
|
||||
}
|
||||
|
||||
/**
|
||||
* 智能对话 - 使用LLM理解意图并调用工具
|
||||
*/
|
||||
async chat(userMessage, conversationHistory = []) {
|
||||
try {
|
||||
// 1. 获取可用工具列表
|
||||
const toolsResult = await mcpService.listTools();
|
||||
if (!toolsResult.success) {
|
||||
throw new Error('获取工具列表失败');
|
||||
}
|
||||
|
||||
const availableTools = toolsResult.data;
|
||||
|
||||
// 2. 构建对话历史
|
||||
const messages = [
|
||||
{
|
||||
role: 'system',
|
||||
content: this.getSystemPrompt(availableTools),
|
||||
},
|
||||
...conversationHistory.map(msg => ({
|
||||
role: msg.isUser ? 'user' : 'assistant',
|
||||
content: msg.content,
|
||||
})),
|
||||
{
|
||||
role: 'user',
|
||||
content: userMessage,
|
||||
},
|
||||
];
|
||||
|
||||
// 3. 调用LLM
|
||||
logger.info('LLMService', '调用LLM', { messageCount: messages.length });
|
||||
|
||||
// 注意:这里需要配置API密钥
|
||||
if (!LLM_CONFIG.apiKey) {
|
||||
// 如果没有配置LLM,使用简单的关键词匹配
|
||||
logger.warn('LLMService', '未配置LLM API密钥,使用简单匹配');
|
||||
return await this.fallbackChat(userMessage);
|
||||
}
|
||||
|
||||
const response = await axios.post(
|
||||
LLM_CONFIG.apiUrl,
|
||||
{
|
||||
model: LLM_CONFIG.model,
|
||||
messages: messages,
|
||||
temperature: 0.7,
|
||||
max_tokens: 1000,
|
||||
},
|
||||
{
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
'Authorization': `Bearer ${LLM_CONFIG.apiKey}`,
|
||||
},
|
||||
timeout: 30000,
|
||||
}
|
||||
);
|
||||
|
||||
const aiResponse = response.data.choices[0].message.content;
|
||||
logger.info('LLMService', 'LLM响应', { response: aiResponse });
|
||||
|
||||
// 4. 解析LLM响应
|
||||
// 如果LLM返回工具调用指令
|
||||
try {
|
||||
const toolCall = JSON.parse(aiResponse);
|
||||
if (toolCall.tool && toolCall.arguments) {
|
||||
// 调用MCP工具
|
||||
const toolResult = await mcpService.callTool(toolCall.tool, toolCall.arguments);
|
||||
|
||||
if (!toolResult.success) {
|
||||
return {
|
||||
success: false,
|
||||
error: toolResult.error,
|
||||
};
|
||||
}
|
||||
|
||||
// 5. 让LLM总结工具结果
|
||||
const summaryMessages = [
|
||||
...messages,
|
||||
{
|
||||
role: 'assistant',
|
||||
content: aiResponse,
|
||||
},
|
||||
{
|
||||
role: 'system',
|
||||
content: `工具 ${toolCall.tool} 返回的数据:\n${JSON.stringify(toolResult.data, null, 2)}\n\n请用自然语言总结这些数据,给用户一个简洁清晰的回复。`,
|
||||
},
|
||||
];
|
||||
|
||||
const summaryResponse = await axios.post(
|
||||
LLM_CONFIG.apiUrl,
|
||||
{
|
||||
model: LLM_CONFIG.model,
|
||||
messages: summaryMessages,
|
||||
temperature: 0.7,
|
||||
max_tokens: 500,
|
||||
},
|
||||
{
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
'Authorization': `Bearer ${LLM_CONFIG.apiKey}`,
|
||||
},
|
||||
timeout: 30000,
|
||||
}
|
||||
);
|
||||
|
||||
const summary = summaryResponse.data.choices[0].message.content;
|
||||
|
||||
return {
|
||||
success: true,
|
||||
data: {
|
||||
message: summary,
|
||||
rawData: toolResult.data,
|
||||
toolUsed: toolCall.tool,
|
||||
},
|
||||
};
|
||||
}
|
||||
} catch (parseError) {
|
||||
// 不是JSON格式,说明是直接回复
|
||||
return {
|
||||
success: true,
|
||||
data: {
|
||||
message: aiResponse,
|
||||
},
|
||||
};
|
||||
}
|
||||
|
||||
// 默认返回LLM的直接回复
|
||||
return {
|
||||
success: true,
|
||||
data: {
|
||||
message: aiResponse,
|
||||
},
|
||||
};
|
||||
} catch (error) {
|
||||
logger.error('LLMService', 'chat error', error);
|
||||
return {
|
||||
success: false,
|
||||
error: error.message || '对话处理失败',
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* 降级方案:简单的关键词匹配(当没有配置LLM时)
|
||||
*/
|
||||
async fallbackChat(userMessage) {
|
||||
logger.info('LLMService', '使用降级方案', { message: userMessage });
|
||||
|
||||
// 使用原有的简单匹配逻辑
|
||||
if (userMessage.includes('新闻') || userMessage.includes('资讯')) {
|
||||
const result = await mcpService.callTool('search_china_news', {
|
||||
query: userMessage.replace(/新闻|资讯/g, '').trim(),
|
||||
top_k: 5,
|
||||
});
|
||||
return this.formatFallbackResponse(result, '新闻搜索');
|
||||
} else if (userMessage.includes('概念') || userMessage.includes('板块')) {
|
||||
const query = userMessage.replace(/概念|板块/g, '').trim();
|
||||
const result = await mcpService.callTool('search_concepts', {
|
||||
query,
|
||||
size: 5,
|
||||
sort_by: 'change_pct',
|
||||
});
|
||||
return this.formatFallbackResponse(result, '概念搜索');
|
||||
} else if (userMessage.includes('涨停')) {
|
||||
const query = userMessage.replace(/涨停/g, '').trim();
|
||||
const result = await mcpService.callTool('search_limit_up_stocks', {
|
||||
query,
|
||||
mode: 'hybrid',
|
||||
page_size: 5,
|
||||
});
|
||||
return this.formatFallbackResponse(result, '涨停分析');
|
||||
} else if (/^[0-9]{6}$/.test(userMessage.trim())) {
|
||||
// 6位数字 = 股票代码
|
||||
const result = await mcpService.callTool('get_stock_basic_info', {
|
||||
seccode: userMessage.trim(),
|
||||
});
|
||||
return this.formatFallbackResponse(result, '股票信息');
|
||||
} else if (userMessage.includes('茅台') || userMessage.includes('贵州茅台')) {
|
||||
// 特殊处理茅台
|
||||
const result = await mcpService.callTool('get_stock_basic_info', {
|
||||
seccode: '600519',
|
||||
});
|
||||
return this.formatFallbackResponse(result, '贵州茅台股票信息');
|
||||
} else {
|
||||
// 默认:搜索新闻
|
||||
const result = await mcpService.callTool('search_china_news', {
|
||||
query: userMessage,
|
||||
top_k: 5,
|
||||
});
|
||||
return this.formatFallbackResponse(result, '新闻搜索');
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* 格式化降级响应
|
||||
*/
|
||||
formatFallbackResponse(result, action) {
|
||||
if (!result.success) {
|
||||
return {
|
||||
success: false,
|
||||
error: result.error,
|
||||
};
|
||||
}
|
||||
|
||||
return {
|
||||
success: true,
|
||||
data: {
|
||||
message: `已为您完成${action},找到以下结果:`,
|
||||
rawData: result.data,
|
||||
},
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* 清除对话历史
|
||||
*/
|
||||
clearHistory() {
|
||||
this.conversationHistory = [];
|
||||
}
|
||||
}
|
||||
|
||||
// 导出单例
|
||||
export const llmService = new LLMService();
|
||||
|
||||
export default LLMService;
|
||||
Reference in New Issue
Block a user