agent功能开发增加MCP后端

This commit is contained in:
2025-11-07 19:11:58 +08:00
parent 446d8f0870
commit 315d606945
15 changed files with 3639 additions and 4 deletions

View File

@@ -2956,8 +2956,36 @@ refactor(components): 将 EventCard 拆分为原子组件
> **📝 页面级变更历史**: 特定页面的详细变更历史和技术文档已迁移到各自的文档中: > **📝 页面级变更历史**: 特定页面的详细变更历史和技术文档已迁移到各自的文档中:
> - **Community 页面**: [docs/Community.md](./docs/Community.md) - 页面架构、组件结构、数据流、变更历史 > - **Community 页面**: [docs/Community.md](./docs/Community.md) - 页面架构、组件结构、数据流、变更历史
> - **Agent 系统**: [AGENT_INTEGRATION_COMPLETE.md](./AGENT_INTEGRATION_COMPLETE.md) - Agent 系统集成完整说明
> - **其他页面**: 根据需要创建独立的页面文档 > - **其他页面**: 根据需要创建独立的页面文档
### 2025-11-07: Agent 系统集成到 mcp_server.py
**影响范围**: 后端 MCP 服务器 + 前端 Agent 聊天功能
**集成成果**:
- 将独立的 Agent 系统完全集成到 `mcp_server.py` 中
- 使用 **Kimi (kimi-k2-thinking)** 进行计划制定和推理
- 使用 **DeepMoney (本地部署)** 进行新闻总结
- 实现三阶段智能分析流程(计划→执行→总结)
- 前端使用 ChatInterfaceV2 + 可折叠卡片展示执行过程
- **无需运行多个脚本**,所有功能集成在单一服务中
**技术要点**:
- 新增 `MCPAgentIntegrated` 类991-1367行
- 新增 `/agent/chat` API 端点
- 新增特殊工具 `summarize_news`(使用 DeepMoney
- Kimi 使用 `reasoning_content` 字段记录思考过程
- 自动替换占位符("前面的新闻数据" → 实际数据)
**前端组件**:
- `ChatInterfaceV2.js` - 新版聊天界面
- `PlanCard.js` - 执行计划展示
- `StepResultCard.js` - 步骤结果卡片(可折叠)
- 路由:`/agent-chat`
**详细文档**: 参见 [AGENT_INTEGRATION_COMPLETE.md](./AGENT_INTEGRATION_COMPLETE.md)
### 2025-10-30: EventList.js 组件化重构 ### 2025-10-30: EventList.js 组件化重构
**影响范围**: Community 页面核心组件 **影响范围**: Community 页面核心组件

381
docs/AGENT_DEPLOYMENT.md Normal file
View File

@@ -0,0 +1,381 @@
# AI Agent 系统部署指南
## 🎯 系统架构
### 三阶段流程
```
用户输入
[阶段1: 计划制定 Planning]
- LLM 分析用户需求
- 确定需要哪些工具
- 制定执行计划steps
[阶段2: 工具执行 Execution]
- 按计划顺序调用 MCP 工具
- 收集数据
- 异常处理和重试
[阶段3: 结果总结 Summarization]
- LLM 综合分析所有数据
- 生成自然语言报告
输出给用户
```
## 📦 文件清单
### 后端文件
```
mcp_server.py # MCP 工具服务器(已有)
mcp_agent_system.py # Agent 系统核心逻辑(新增)
mcp_config.py # 配置文件(已有)
mcp_database.py # 数据库操作(已有)
```
### 前端文件
```
src/components/ChatBot/
├── ChatInterfaceV2.js # 新版聊天界面(漂亮)
├── PlanCard.js # 执行计划卡片
├── StepResultCard.js # 步骤结果卡片(可折叠)
├── ChatInterface.js # 旧版聊天界面(保留)
├── MessageBubble.js # 消息气泡组件(保留)
└── index.js # 统一导出
src/views/AgentChat/
└── index.js # Agent 聊天页面
```
## 🚀 部署步骤
### 1. 安装依赖
```bash
# 进入项目目录
cd /home/ubuntu/vf_react
# 安装 OpenAI SDK支持多个LLM提供商
pip install openai
```
### 2. 获取 LLM API Key
**推荐:通义千问(便宜且中文能力强)**
1. 访问 https://dashscope.console.aliyun.com/
2. 注册/登录阿里云账号
3. 开通 DashScope 服务
4. 创建 API Key
5. 复制 API Key格式`sk-xxx...`
**其他选择**
- DeepSeek: https://platform.deepseek.com/ (最便宜)
- OpenAI: https://platform.openai.com/ (需要翻墙)
### 3. 配置环境变量
```bash
# 编辑环境变量
sudo nano /etc/environment
# 添加以下内容(选择一个)
# 方式1: 通义千问(推荐)
DASHSCOPE_API_KEY="sk-your-key-here"
# 方式2: DeepSeek更便宜
DEEPSEEK_API_KEY="sk-your-key-here"
# 方式3: OpenAI
OPENAI_API_KEY="sk-your-key-here"
# 保存并退出,然后重新加载
source /etc/environment
# 验证环境变量
echo $DASHSCOPE_API_KEY
```
### 4. 修改 mcp_server.py
在文件末尾(`if __name__ == "__main__":` 之前)添加:
```python
# ==================== Agent 端点 ====================
from mcp_agent_system import MCPAgent, ChatRequest, AgentResponse
# 创建 Agent 实例
agent = MCPAgent(provider="qwen") # 或 "deepseek", "openai"
@app.post("/agent/chat", response_model=AgentResponse)
async def agent_chat(request: ChatRequest):
"""智能代理对话端点"""
logger.info(f"Agent chat: {request.message}")
# 获取工具列表和处理器
tools = [tool.dict() for tool in TOOLS]
# 处理查询
response = await agent.process_query(
user_query=request.message,
tools=tools,
tool_handlers=TOOL_HANDLERS,
)
return response
```
### 5. 重启 MCP 服务
```bash
# 如果使用 systemd
sudo systemctl restart mcp-server
# 或者手动重启
pkill -f mcp_server
nohup uvicorn mcp_server:app --host 0.0.0.0 --port 8900 > mcp_server.log 2>&1 &
# 查看日志
tail -f mcp_server.log
```
### 6. 测试 Agent API
```bash
# 测试 Agent 端点
curl -X POST http://localhost:8900/agent/chat \
-H "Content-Type: application/json" \
-d '{
"message": "全面分析贵州茅台这只股票",
"conversation_history": []
}'
# 应该返回类似这样的JSON
# {
# "success": true,
# "message": "根据分析,贵州茅台...",
# "plan": {
# "goal": "全面分析贵州茅台",
# "steps": [...]
# },
# "step_results": [...],
# "metadata": {...}
# }
```
### 7. 部署前端
```bash
# 在本地构建
npm run build
# 上传到服务器
scp -r build/* ubuntu@your-server:/var/www/valuefrontier.cn/
# 或者在服务器上构建
cd /home/ubuntu/vf_react
npm run build
sudo cp -r build/* /var/www/valuefrontier.cn/
```
### 8. 重启 Nginx
```bash
sudo systemctl reload nginx
```
## ✅ 验证部署
### 1. 测试后端 API
```bash
# 测试工具列表
curl https://valuefrontier.cn/mcp/tools
# 测试 Agent
curl -X POST https://valuefrontier.cn/mcp/agent/chat \
-H "Content-Type: application/json" \
-d '{
"message": "今日涨停股票有哪些",
"conversation_history": []
}'
```
### 2. 测试前端
1. 访问 https://valuefrontier.cn/agent-chat
2. 输入问题:"全面分析贵州茅台这只股票"
3. 观察:
- ✓ 是否显示执行计划卡片
- ✓ 是否显示步骤执行过程
- ✓ 是否显示最终总结
- ✓ 步骤结果卡片是否可折叠
### 3. 测试用例
```
测试1: 简单查询
输入:查询贵州茅台的股票信息
预期:调用 get_stock_basic_info返回基本信息
测试2: 深度分析(推荐)
输入:全面分析贵州茅台这只股票
预期:
- 步骤1: get_stock_basic_info
- 步骤2: get_stock_financial_index
- 步骤3: get_stock_trade_data
- 步骤4: search_china_news
- 步骤5: summarize_with_llm
测试3: 市场热点
输入:今日涨停股票有哪些亮点
预期:
- 步骤1: search_limit_up_stocks
- 步骤2: get_concept_statistics
- 步骤3: summarize_with_llm
测试4: 概念分析
输入:新能源概念板块的投资机会
预期:
- 步骤1: search_concepts新能源
- 步骤2: search_china_news新能源
- 步骤3: summarize_with_llm
```
## 🐛 故障排查
### 问题1: Agent 返回 "Provider not configured"
**原因**: 环境变量未设置
**解决**:
```bash
# 检查环境变量
echo $DASHSCOPE_API_KEY
# 如果为空,重新设置
export DASHSCOPE_API_KEY="sk-xxx..."
# 重启服务
sudo systemctl restart mcp-server
```
### 问题2: Agent 返回 JSON 解析错误
**原因**: LLM 没有返回正确的 JSON 格式
**解决**: 在 `mcp_agent_system.py` 中已经处理了代码块标记清理,如果还有问题:
1. 检查 LLM 的 temperature 参数(建议 0.3
2. 检查 prompt 是否清晰
3. 尝试不同的 LLM 提供商
### 问题3: 前端显示 "查询失败"
**原因**: 后端 API 未正确配置或 Nginx 代理问题
**解决**:
```bash
# 1. 检查 MCP 服务是否运行
ps aux | grep mcp_server
# 2. 检查 Nginx 配置
sudo nginx -t
# 3. 查看错误日志
sudo tail -f /var/log/nginx/error.log
tail -f /home/ubuntu/vf_react/mcp_server.log
```
### 问题4: 执行步骤失败
**原因**: 某个 MCP 工具调用失败
**解决**: 查看步骤结果卡片中的错误信息,通常是:
- API 超时:增加 timeout
- 参数错误:检查工具定义
- 数据库连接失败:检查数据库连接
## 💰 成本估算
### 使用通义千问qwen-plus
**价格**: ¥0.004/1000 tokens
**典型对话消耗**:
- 简单查询1步: ~500 tokens = ¥0.002
- 深度分析5步: ~3000 tokens = ¥0.012
- 平均每次对话: ¥0.005
**月度成本**1000次深度分析:
- 1000次 × ¥0.012 = ¥12
**结论**: 非常便宜1000次深度分析只需要12元。
### 使用 DeepSeek更便宜
**价格**: ¥0.001/1000 tokens比通义千问便宜4倍
**月度成本**1000次深度分析:
- 1000次 × ¥0.003 = ¥3
## 📊 监控和优化
### 1. 添加日志监控
```bash
# 实时查看 Agent 日志
tail -f mcp_server.log | grep -E "\[Agent\]|\[Planning\]|\[Execution\]|\[Summary\]"
```
### 2. 性能优化建议
1. **缓存计划**: 相似的问题可以复用执行计划
2. **并行执行**: 独立的工具调用可以并行执行
3. **流式输出**: 使用 Server-Sent Events 实时返回进度
4. **结果缓存**: 相同的工具调用结果可以缓存
### 3. 添加统计分析
`mcp_server.py` 中添加:
```python
from datetime import datetime
import json
# 记录每次 Agent 调用
@app.post("/agent/chat")
async def agent_chat(request: ChatRequest):
start_time = datetime.now()
response = await agent.process_query(...)
duration = (datetime.now() - start_time).total_seconds()
# 记录到日志
logger.info(f"Agent query completed in {duration:.2f}s", extra={
"query": request.message,
"steps": len(response.plan.steps) if response.plan else 0,
"success": response.success,
"duration": duration,
})
return response
```
## 🎉 完成!
现在你的 AI Agent 系统已经部署完成!
访问 https://valuefrontier.cn/agent-chat 开始使用。
**特点**:
- ✅ 三阶段智能分析(计划-执行-总结)
- ✅ 漂亮的UI界面卡片式展示
- ✅ 步骤结果可折叠查看
- ✅ 实时进度反馈
- ✅ 异常处理和重试
- ✅ 成本低廉¥3-12/月)

309
docs/MCP_ARCHITECTURE.md Normal file
View File

@@ -0,0 +1,309 @@
# MCP 架构说明
## 🎯 MCP 是什么?
**MCP (Model Context Protocol)** 是一个**工具调用协议**,它的核心职责是:
1.**定义工具接口**:告诉 LLM 有哪些工具可用,每个工具需要什么参数
2.**执行工具调用**:根据请求调用对应的后端 API
3.**返回结构化数据**:将 API 结果返回给调用方
**MCP 不负责**
- ❌ 自然语言理解NLU
- ❌ 意图识别
- ❌ 结果总结
- ❌ 对话管理
## 📊 当前架构
### 方案 1简单关键词匹配已实现
```
用户输入:"查询贵州茅台的股票信息"
前端 ChatInterface (关键词匹配)
MCP 工具层 (search_china_news)
返回 JSON 数据
前端显示原始数据
```
**问题**
- ✗ 只能识别简单关键词
- ✗ 无法理解复杂意图
- ✗ 返回的是原始 JSON用户体验差
### 方案 2集成 LLM推荐
```
用户输入:"查询贵州茅台的股票信息"
LLM (Claude/GPT-4/通义千问)
↓ 理解意图:需要查询股票代码 600519 的基本信息
↓ 选择工具get_stock_basic_info
↓ 提取参数:{"seccode": "600519"}
MCP 工具层
↓ 调用 API获取数据
返回结构化数据
LLM 总结结果
↓ "贵州茅台600519是中国知名的白酒生产企业
当前股价 1650.00 元,市值 2.07 万亿..."
前端显示自然语言回复
```
**优势**
- ✓ 理解复杂意图
- ✓ 自动选择合适的工具
- ✓ 自然语言总结,用户体验好
- ✓ 支持多轮对话
## 🔧 实现方案
### 选项 A前端集成 LLM快速实现
**适用场景**:快速原型、小规模应用
**优点**
- 实现简单
- 无需修改后端
**缺点**
- API Key 暴露在前端(安全风险)
- 每个用户都消耗 API 额度
- 无法统一管理和监控
**实现步骤**
1. 修改 `src/components/ChatBot/ChatInterface.js`
```javascript
import { llmService } from '../../services/llmService';
const handleSendMessage = async () => {
// ...
// 使用 LLM 服务替代简单的 mcpService.chat
const response = await llmService.chat(inputValue, messages);
// ...
};
```
2. 配置 API Key`.env.local`
```bash
REACT_APP_OPENAI_API_KEY=sk-xxx...
# 或者使用通义千问(更便宜)
REACT_APP_DASHSCOPE_API_KEY=sk-xxx...
```
### 选项 B后端集成 LLM生产推荐
**适用场景**:生产环境、需要安全和性能
**优点**
- ✓ API Key 安全(不暴露给前端)
- ✓ 统一管理和监控
- ✓ 可以做缓存优化
- ✓ 可以做速率限制
**缺点**
- 需要修改后端
- 增加服务器成本
**实现步骤**
#### 1. 安装依赖
```bash
pip install openai
```
#### 2. 修改 `mcp_server.py`,添加聊天端点
在文件末尾添加:
```python
from mcp_chat_endpoint import MCPChatAssistant, ChatRequest, ChatResponse
# 创建聊天助手实例
chat_assistant = MCPChatAssistant(provider="qwen") # 推荐使用通义千问
@app.post("/chat", response_model=ChatResponse)
async def chat_endpoint(request: ChatRequest):
"""智能对话端点 - 使用LLM理解意图并调用工具"""
logger.info(f"Chat request: {request.message}")
# 获取可用工具列表
tools = [tool.dict() for tool in TOOLS]
# 调用聊天助手
response = await chat_assistant.chat(
user_message=request.message,
conversation_history=request.conversation_history,
tools=tools,
)
return response
```
#### 3. 配置环境变量
在服务器上设置:
```bash
# 方式1使用通义千问推荐价格便宜
export DASHSCOPE_API_KEY="sk-xxx..."
# 方式2使用 OpenAI
export OPENAI_API_KEY="sk-xxx..."
# 方式3使用 DeepSeek最便宜
export DEEPSEEK_API_KEY="sk-xxx..."
```
#### 4. 修改前端 `mcpService.js`
```javascript
/**
* 智能对话 - 使用后端LLM处理
*/
async chat(userMessage, conversationHistory = []) {
try {
const response = await this.client.post('/chat', {
message: userMessage,
conversation_history: conversationHistory,
});
return {
success: true,
data: response,
};
} catch (error) {
return {
success: false,
error: error.message || '对话处理失败',
};
}
}
```
#### 5. 修改前端 `ChatInterface.js`
```javascript
const handleSendMessage = async () => {
// ...
try {
// 调用后端聊天API
const response = await mcpService.chat(inputValue, messages);
if (response.success) {
const botMessage = {
id: Date.now() + 1,
content: response.data.message, // LLM总结的自然语言
isUser: false,
type: 'text',
timestamp: new Date().toISOString(),
toolUsed: response.data.tool_used, // 可选:显示使用了哪个工具
rawData: response.data.raw_data, // 可选:原始数据(折叠显示)
};
setMessages((prev) => [...prev, botMessage]);
}
} catch (error) {
// ...
}
};
```
## 💰 LLM 选择和成本
### 推荐:通义千问(阿里云)
**优点**
- 价格便宜1000次对话约 ¥1-2
- 中文理解能力强
- 国内访问稳定
**价格**
- qwen-plus: ¥0.004/1000 tokens约 ¥0.001/次对话)
- qwen-turbo: ¥0.002/1000 tokens更便宜
**获取 API Key**
1. 访问 https://dashscope.console.aliyun.com/
2. 创建 API Key
3. 设置环境变量 `DASHSCOPE_API_KEY`
### 其他选择
| 提供商 | 模型 | 价格 | 优点 | 缺点 |
|--------|------|------|------|------|
| **通义千问** | qwen-plus | ¥0.001/次 | 便宜、中文好 | - |
| **DeepSeek** | deepseek-chat | ¥0.0005/次 | 最便宜 | 新公司 |
| **OpenAI** | gpt-4o-mini | $0.15/1M tokens | 能力强 | 贵、需翻墙 |
| **Claude** | claude-3-haiku | $0.25/1M tokens | 理解力强 | 贵、需翻墙 |
## 🚀 部署步骤
### 1. 后端部署
```bash
# 安装依赖
pip install openai
# 设置 API Key
export DASHSCOPE_API_KEY="sk-xxx..."
# 重启服务
sudo systemctl restart mcp-server
# 测试聊天端点
curl -X POST https://valuefrontier.cn/mcp/chat \
-H "Content-Type: application/json" \
-d '{"message": "查询贵州茅台的股票信息"}'
```
### 2. 前端部署
```bash
# 构建
npm run build
# 部署
scp -r build/* user@server:/var/www/valuefrontier.cn/
```
### 3. 验证
访问 https://valuefrontier.cn/agent-chat测试对话
**测试用例**
1. "查询贵州茅台的股票信息" → 应返回自然语言总结
2. "今日涨停的股票有哪些" → 应返回涨停股票列表并总结
3. "新能源概念板块表现如何" → 应搜索概念并分析
## 📊 对比总结
| 特性 | 简单匹配 | 前端LLM | 后端LLM ⭐ |
|------|---------|---------|-----------|
| 实现难度 | 简单 | 中等 | 中等 |
| 用户体验 | 差 | 好 | 好 |
| 安全性 | 高 | 低 | 高 |
| 成本 | 无 | 用户承担 | 服务器承担 |
| 可维护性 | 差 | 中 | 好 |
| **推荐指数** | ⭐ | ⭐⭐ | ⭐⭐⭐⭐⭐ |
## 🎯 最终推荐
**生产环境:后端集成 LLM (方案 B)**
- 使用通义千问qwen-plus
- 成本低(约 ¥50/月10000次对话
- 安全可靠
**快速原型:前端集成 LLM (方案 A)**
- 适合演示
- 快速验证可行性
- 后续再迁移到后端

View File

@@ -11,7 +11,7 @@ from mcp_client_example import MCPClient
# Kimi API配置 # Kimi API配置
KIMI_API_KEY = "sk-TzB4VYJfCoXGcGrGMiewukVRzjuDsbVCkaZXi2LvkS8s60E5" KIMI_API_KEY = "sk-TzB4VYJfCoXGcGrGMiewukVRzjuDsbVCkaZXi2LvkS8s60E5"
KIMI_BASE_URL = "https://api.moonshot.cn/v1" KIMI_BASE_URL = "https://api.moonshot.cn/v1"
KIMI_MODEL = "kimi-k2-turbo-preview" KIMI_MODEL = "kimi-k2-turbpreview"
# 初始化Kimi客户端 # 初始化Kimi客户端
kimi_client = OpenAI( kimi_client = OpenAI(

470
mcp_agent_system.py Normal file
View File

@@ -0,0 +1,470 @@
"""
MCP Agent System - 基于 DeepResearch 逻辑的智能代理系统
三阶段流程:计划制定 → 工具执行 → 结果总结
"""
from pydantic import BaseModel
from typing import List, Dict, Any, Optional, Literal
from datetime import datetime
import json
import logging
from openai import OpenAI
import asyncio
import os
logger = logging.getLogger(__name__)
# ==================== 数据模型 ====================
class ToolCall(BaseModel):
"""工具调用"""
tool: str
arguments: Dict[str, Any]
reason: str # 为什么要调用这个工具
class ExecutionPlan(BaseModel):
"""执行计划"""
goal: str # 用户的目标
steps: List[ToolCall] # 执行步骤
reasoning: str # 规划reasoning
class StepResult(BaseModel):
"""单步执行结果"""
step_index: int
tool: str
arguments: Dict[str, Any]
status: Literal["success", "failed", "skipped"]
result: Optional[Any] = None
error: Optional[str] = None
execution_time: float = 0
class AgentResponse(BaseModel):
"""Agent响应"""
success: bool
message: str # 自然语言总结
plan: Optional[ExecutionPlan] = None # 执行计划
step_results: List[StepResult] = [] # 每步的结果
final_summary: Optional[str] = None # 最终总结
metadata: Optional[Dict[str, Any]] = None
class ChatRequest(BaseModel):
"""聊天请求"""
message: str
conversation_history: List[Dict[str, str]] = []
stream: bool = False # 是否流式输出
# ==================== Agent 系统 ====================
class MCPAgent:
"""MCP 智能代理 - 三阶段执行"""
def __init__(self, provider: str = "qwen"):
self.provider = provider
# LLM 配置
config = {
"qwen": {
"api_key": os.getenv("DASHSCOPE_API_KEY", ""),
"base_url": "https://dashscope.aliyuncs.com/compatible-mode/v1",
"model": "qwen-plus",
},
"deepseek": {
"api_key": os.getenv("DEEPSEEK_API_KEY", ""),
"base_url": "https://api.deepseek.com/v1",
"model": "deepseek-chat",
},
"openai": {
"api_key": os.getenv("OPENAI_API_KEY", ""),
"base_url": "https://api.openai.com/v1",
"model": "gpt-4o-mini",
},
}.get(provider)
if not config or not config["api_key"]:
raise ValueError(f"Provider '{provider}' not configured. Please set API key.")
self.client = OpenAI(
api_key=config["api_key"],
base_url=config["base_url"],
)
self.model = config["model"]
# ==================== 阶段 1: 计划制定 ====================
def get_planning_prompt(self, tools: List[dict]) -> str:
"""获取计划制定的系统提示词"""
tools_desc = "\n\n".join([
f"**{tool['name']}**\n"
f"描述:{tool['description']}\n"
f"参数:{json.dumps(tool['parameters'], ensure_ascii=False, indent=2)}"
for tool in tools
])
return f"""你是一个专业的金融研究助手。你需要根据用户的问题,制定一个详细的执行计划。
## 可用工具
{tools_desc}
## 重要知识
- 贵州茅台股票代码: 600519
- 涨停: 股价单日涨幅约10%
- 概念板块: 相同题材的股票分类
## 特殊工具说明
- **summarize_with_llm**: 这是一个特殊工具,用于让你总结和分析收集到的数据
- 当需要对多个数据源进行综合分析时使用
- 当需要生成研究报告时使用
- 参数: {{"data": "要分析的数据", "task": "分析任务描述"}}
## 任务
分析用户问题,制定执行计划。返回 JSON 格式:
```json
{{
"goal": "用户的目标(一句话概括)",
"reasoning": "你的分析思路(为什么这样规划)",
"steps": [
{{
"tool": "工具名称",
"arguments": {{"参数名": "参数值"}},
"reason": "为什么要执行这一步"
}}
]
}}
```
## 规划原则
1. **从简到繁**: 先获取基础信息,再深入分析
2. **数据先行**: 先收集数据,再总结分析
3. **合理组合**: 可以调用多个工具但不要超过5个
4. **包含总结**: 最后一步通常是 summarize_with_llm
## 示例
用户:"帮我全面分析一下贵州茅台这只股票"
你的计划:
```json
{{
"goal": "全面分析贵州茅台股票",
"reasoning": "需要获取基本信息、财务指标、交易数据,然后综合分析",
"steps": [
{{
"tool": "get_stock_basic_info",
"arguments": {{"seccode": "600519"}},
"reason": "获取股票基本信息(公司名称、行业、市值等)"
}},
{{
"tool": "get_stock_financial_index",
"arguments": {{"seccode": "600519", "limit": 5}},
"reason": "获取最近5期财务指标营收、利润、ROE等"
}},
{{
"tool": "get_stock_trade_data",
"arguments": {{"seccode": "600519", "limit": 30}},
"reason": "获取最近30天交易数据价格走势、成交量"
}},
{{
"tool": "search_china_news",
"arguments": {{"query": "贵州茅台", "top_k": 5}},
"reason": "获取最新新闻,了解市场动态"
}},
{{
"tool": "summarize_with_llm",
"arguments": {{
"data": "前面收集的所有数据",
"task": "综合分析贵州茅台的投资价值,包括基本面、财务状况、股价走势、市场情绪"
}},
"reason": "综合所有数据,生成投资分析报告"
}}
]
}}
```
只返回JSON不要额外解释。"""
async def create_plan(self, user_query: str, tools: List[dict]) -> ExecutionPlan:
"""阶段1: 创建执行计划"""
logger.info(f"[Planning] Creating plan for: {user_query}")
messages = [
{"role": "system", "content": self.get_planning_prompt(tools)},
{"role": "user", "content": user_query},
]
response = self.client.chat.completions.create(
model=self.model,
messages=messages,
temperature=0.3,
max_tokens=1500,
)
plan_json = response.choices[0].message.content.strip()
logger.info(f"[Planning] Raw response: {plan_json}")
# 清理可能的代码块标记
if "```json" in plan_json:
plan_json = plan_json.split("```json")[1].split("```")[0].strip()
elif "```" in plan_json:
plan_json = plan_json.split("```")[1].split("```")[0].strip()
plan_data = json.loads(plan_json)
plan = ExecutionPlan(
goal=plan_data["goal"],
reasoning=plan_data.get("reasoning", ""),
steps=[
ToolCall(**step) for step in plan_data["steps"]
],
)
logger.info(f"[Planning] Plan created: {len(plan.steps)} steps")
return plan
# ==================== 阶段 2: 工具执行 ====================
async def execute_tool(
self,
tool_name: str,
arguments: Dict[str, Any],
tool_handlers: Dict[str, Any],
) -> Dict[str, Any]:
"""执行单个工具"""
# 特殊处理summarize_with_llm
if tool_name == "summarize_with_llm":
return await self.summarize_with_llm(
data=arguments.get("data", ""),
task=arguments.get("task", "总结数据"),
)
# 调用 MCP 工具
handler = tool_handlers.get(tool_name)
if not handler:
raise ValueError(f"Tool '{tool_name}' not found")
result = await handler(arguments)
return result
async def execute_plan(
self,
plan: ExecutionPlan,
tool_handlers: Dict[str, Any],
) -> List[StepResult]:
"""阶段2: 执行计划中的所有步骤"""
logger.info(f"[Execution] Starting execution: {len(plan.steps)} steps")
results = []
collected_data = {} # 收集的数据,供后续步骤使用
for i, step in enumerate(plan.steps):
logger.info(f"[Execution] Step {i+1}/{len(plan.steps)}: {step.tool}")
start_time = datetime.now()
try:
# 替换 arguments 中的占位符
arguments = step.arguments.copy()
if step.tool == "summarize_with_llm" and arguments.get("data") == "前面收集的所有数据":
# 将收集的数据传递给总结工具
arguments["data"] = json.dumps(collected_data, ensure_ascii=False, indent=2)
# 执行工具
result = await self.execute_tool(step.tool, arguments, tool_handlers)
execution_time = (datetime.now() - start_time).total_seconds()
# 保存结果
step_result = StepResult(
step_index=i,
tool=step.tool,
arguments=arguments,
status="success",
result=result,
execution_time=execution_time,
)
results.append(step_result)
# 收集数据
collected_data[f"step_{i+1}_{step.tool}"] = result
logger.info(f"[Execution] Step {i+1} completed in {execution_time:.2f}s")
except Exception as e:
logger.error(f"[Execution] Step {i+1} failed: {str(e)}")
execution_time = (datetime.now() - start_time).total_seconds()
step_result = StepResult(
step_index=i,
tool=step.tool,
arguments=step.arguments,
status="failed",
error=str(e),
execution_time=execution_time,
)
results.append(step_result)
# 根据错误类型决定是否继续
if "not found" in str(e).lower():
logger.warning(f"[Execution] Stopping due to critical error")
break
else:
logger.warning(f"[Execution] Continuing despite error")
continue
logger.info(f"[Execution] Execution completed: {len(results)} steps")
return results
async def summarize_with_llm(self, data: str, task: str) -> str:
"""特殊工具:使用 LLM 总结数据"""
logger.info(f"[LLM Summary] Task: {task}")
messages = [
{
"role": "system",
"content": "你是一个专业的金融分析师。根据提供的数据,完成指定的分析任务。"
},
{
"role": "user",
"content": f"## 任务\n{task}\n\n## 数据\n{data}\n\n请根据数据完成分析任务,用专业且易懂的语言呈现。"
},
]
response = self.client.chat.completions.create(
model=self.model,
messages=messages,
temperature=0.7,
max_tokens=2000,
)
summary = response.choices[0].message.content
return summary
# ==================== 阶段 3: 结果总结 ====================
async def generate_final_summary(
self,
user_query: str,
plan: ExecutionPlan,
step_results: List[StepResult],
) -> str:
"""阶段3: 生成最终总结"""
logger.info("[Summary] Generating final summary")
# 收集所有成功的结果
successful_results = [r for r in step_results if r.status == "success"]
if not successful_results:
return "很抱歉,所有步骤都执行失败,无法生成分析报告。"
# 构建总结提示
results_text = "\n\n".join([
f"**步骤 {r.step_index + 1}: {r.tool}**\n"
f"结果: {json.dumps(r.result, ensure_ascii=False, indent=2)[:1000]}..."
for r in successful_results
])
messages = [
{
"role": "system",
"content": "你是一个专业的金融研究助手。根据执行结果,生成一份简洁清晰的报告。"
},
{
"role": "user",
"content": f"""
用户问题:{user_query}
执行计划:{plan.goal}
执行结果:
{results_text}
请根据以上信息生成一份专业的分析报告300字以内
"""
},
]
response = self.client.chat.completions.create(
model=self.model,
messages=messages,
temperature=0.7,
max_tokens=1000,
)
summary = response.choices[0].message.content
logger.info("[Summary] Final summary generated")
return summary
# ==================== 主流程 ====================
async def process_query(
self,
user_query: str,
tools: List[dict],
tool_handlers: Dict[str, Any],
) -> AgentResponse:
"""主流程:处理用户查询"""
logger.info(f"[Agent] Processing query: {user_query}")
try:
# 阶段 1: 创建计划
plan = await self.create_plan(user_query, tools)
# 阶段 2: 执行计划
step_results = await self.execute_plan(plan, tool_handlers)
# 阶段 3: 生成总结
final_summary = await self.generate_final_summary(
user_query, plan, step_results
)
return AgentResponse(
success=True,
message=final_summary,
plan=plan,
step_results=step_results,
final_summary=final_summary,
metadata={
"total_steps": len(plan.steps),
"successful_steps": len([r for r in step_results if r.status == "success"]),
"failed_steps": len([r for r in step_results if r.status == "failed"]),
"total_execution_time": sum(r.execution_time for r in step_results),
},
)
except Exception as e:
logger.error(f"[Agent] Error: {str(e)}", exc_info=True)
return AgentResponse(
success=False,
message=f"处理失败: {str(e)}",
)
# ==================== FastAPI 端点 ====================
"""
在 mcp_server.py 中添加:
from mcp_agent_system import MCPAgent, ChatRequest, AgentResponse
# 创建 Agent 实例
agent = MCPAgent(provider="qwen")
@app.post("/agent/chat", response_model=AgentResponse)
async def agent_chat(request: ChatRequest):
\"\"\"智能代理对话端点\"\"\"
logger.info(f"Agent chat: {request.message}")
# 获取工具列表和处理器
tools = [tool.dict() for tool in TOOLS]
# 处理查询
response = await agent.process_query(
user_query=request.message,
tools=tools,
tool_handlers=TOOL_HANDLERS,
)
return response
"""

295
mcp_chat_endpoint.py Normal file
View File

@@ -0,0 +1,295 @@
"""
MCP Chat Endpoint - 添加到 mcp_server.py
集成LLM实现智能对话自动调用MCP工具并总结结果
"""
from pydantic import BaseModel
from typing import List, Dict, Any, Optional
import os
import json
from openai import OpenAI
import logging
logger = logging.getLogger(__name__)
# ==================== LLM配置 ====================
# 支持多种LLM提供商
LLM_PROVIDERS = {
"openai": {
"api_key": os.getenv("OPENAI_API_KEY", ""),
"base_url": "https://api.openai.com/v1",
"model": "gpt-4o-mini", # 便宜且快速
},
"qwen": {
"api_key": os.getenv("DASHSCOPE_API_KEY", ""),
"base_url": "https://dashscope.aliyuncs.com/compatible-mode/v1",
"model": "qwen-plus",
},
"deepseek": {
"api_key": os.getenv("DEEPSEEK_API_KEY", ""),
"base_url": "https://api.deepseek.com/v1",
"model": "deepseek-chat",
},
}
# 默认使用的LLM提供商
DEFAULT_PROVIDER = "qwen" # 推荐使用通义千问,价格便宜
# ==================== 数据模型 ====================
class Message(BaseModel):
"""消息"""
role: str # system, user, assistant
content: str
class ChatRequest(BaseModel):
"""聊天请求"""
message: str
conversation_history: List[Dict[str, str]] = []
provider: Optional[str] = DEFAULT_PROVIDER
class ChatResponse(BaseModel):
"""聊天响应"""
success: bool
message: str
tool_used: Optional[str] = None
raw_data: Optional[Any] = None
error: Optional[str] = None
# ==================== LLM助手类 ====================
class MCPChatAssistant:
"""MCP聊天助手 - 集成LLM和工具调用"""
def __init__(self, provider: str = DEFAULT_PROVIDER):
self.provider = provider
config = LLM_PROVIDERS.get(provider)
if not config or not config["api_key"]:
logger.warning(f"LLM provider '{provider}' not configured, using fallback mode")
self.client = None
else:
self.client = OpenAI(
api_key=config["api_key"],
base_url=config["base_url"],
)
self.model = config["model"]
def get_system_prompt(self, tools: List[dict]) -> str:
"""构建系统提示词"""
tools_desc = "\n\n".join([
f"**{tool['name']}**\n描述:{tool['description']}\n参数:{json.dumps(tool['parameters'], ensure_ascii=False, indent=2)}"
for tool in tools
])
return f"""你是一个专业的金融投资助手。你可以使用以下工具来帮助用户查询信息:
{tools_desc}
## 工作流程
1. **理解用户意图**:分析用户问题,确定需要什么信息
2. **选择工具**:从上面的工具中选择最合适的一个或多个
3. **提取参数**:从用户输入中提取工具需要的参数
4. **返回工具调用指令**JSON格式
{{"tool": "工具名", "arguments": {{...}}}}
## 重要规则
- 贵州茅台的股票代码是 **600519**
- 如果用户提到股票名称,尝试推断股票代码
- 如果不确定需要什么信息,使用 search_china_news 搜索相关新闻
- 涨停是指股票当日涨幅达到10%左右
- 只返回工具调用指令,不要额外解释
## 示例
用户:"查询贵州茅台的股票信息"
你:{{"tool": "get_stock_basic_info", "arguments": {{"seccode": "600519"}}}}
用户:"今日涨停的股票有哪些"
你:{{"tool": "search_limit_up_stocks", "arguments": {{"query": "", "mode": "hybrid", "page_size": 10}}}}
用户:"新能源概念板块表现如何"
你:{{"tool": "search_concepts", "arguments": {{"query": "新能源", "size": 10, "sort_by": "change_pct"}}}}
"""
async def chat(self, user_message: str, conversation_history: List[Dict[str, str]], tools: List[dict]) -> ChatResponse:
"""智能对话"""
try:
if not self.client:
# 降级到简单匹配
return await self.fallback_chat(user_message)
# 1. 构建消息历史
messages = [
{"role": "system", "content": self.get_system_prompt(tools)},
]
# 添加历史对话最多保留最近10轮
for msg in conversation_history[-20:]:
messages.append({
"role": "user" if msg.get("isUser") else "assistant",
"content": msg.get("content", ""),
})
messages.append({"role": "user", "content": user_message})
# 2. 调用LLM获取工具调用指令
logger.info(f"Calling LLM with {len(messages)} messages")
response = self.client.chat.completions.create(
model=self.model,
messages=messages,
temperature=0.3, # 低温度,更确定性
max_tokens=500,
)
tool_call_instruction = response.choices[0].message.content.strip()
logger.info(f"LLM response: {tool_call_instruction}")
# 3. 解析工具调用指令
try:
tool_call = json.loads(tool_call_instruction)
tool_name = tool_call.get("tool")
tool_args = tool_call.get("arguments", {})
if not tool_name:
raise ValueError("No tool specified")
# 4. 调用工具(这里需要导入 mcp_server 的工具处理器)
from mcp_server import TOOL_HANDLERS
handler = TOOL_HANDLERS.get(tool_name)
if not handler:
raise ValueError(f"Tool '{tool_name}' not found")
tool_result = await handler(tool_args)
# 5. 让LLM总结结果
summary_messages = messages + [
{"role": "assistant", "content": tool_call_instruction},
{"role": "system", "content": f"工具 {tool_name} 返回的数据:\n{json.dumps(tool_result, ensure_ascii=False, indent=2)}\n\n请用自然语言总结这些数据给用户一个简洁清晰的回复不超过200字"}
]
summary_response = self.client.chat.completions.create(
model=self.model,
messages=summary_messages,
temperature=0.7,
max_tokens=300,
)
summary = summary_response.choices[0].message.content
return ChatResponse(
success=True,
message=summary,
tool_used=tool_name,
raw_data=tool_result,
)
except json.JSONDecodeError:
# LLM没有返回JSON格式直接返回其回复
return ChatResponse(
success=True,
message=tool_call_instruction,
)
except Exception as tool_error:
logger.error(f"Tool execution error: {str(tool_error)}")
return ChatResponse(
success=False,
message="工具调用失败",
error=str(tool_error),
)
except Exception as e:
logger.error(f"Chat error: {str(e)}", exc_info=True)
return ChatResponse(
success=False,
message="对话处理失败",
error=str(e),
)
async def fallback_chat(self, user_message: str) -> ChatResponse:
"""降级方案:简单关键词匹配"""
from mcp_server import TOOL_HANDLERS
try:
# 茅台特殊处理
if "茅台" in user_message or "贵州茅台" in user_message:
handler = TOOL_HANDLERS.get("get_stock_basic_info")
result = await handler({"seccode": "600519"})
return ChatResponse(
success=True,
message="已为您查询贵州茅台(600519)的股票信息:",
tool_used="get_stock_basic_info",
raw_data=result,
)
# 涨停分析
elif "涨停" in user_message:
handler = TOOL_HANDLERS.get("search_limit_up_stocks")
query = user_message.replace("涨停", "").strip()
result = await handler({"query": query, "mode": "hybrid", "page_size": 10})
return ChatResponse(
success=True,
message="已为您查询涨停股票信息:",
tool_used="search_limit_up_stocks",
raw_data=result,
)
# 概念板块
elif "概念" in user_message or "板块" in user_message:
handler = TOOL_HANDLERS.get("search_concepts")
query = user_message.replace("概念", "").replace("板块", "").strip()
result = await handler({"query": query, "size": 10, "sort_by": "change_pct"})
return ChatResponse(
success=True,
message=f"已为您查询'{query}'相关概念板块:",
tool_used="search_concepts",
raw_data=result,
)
# 默认:搜索新闻
else:
handler = TOOL_HANDLERS.get("search_china_news")
result = await handler({"query": user_message, "top_k": 5})
return ChatResponse(
success=True,
message="已为您搜索相关新闻:",
tool_used="search_china_news",
raw_data=result,
)
except Exception as e:
logger.error(f"Fallback chat error: {str(e)}")
return ChatResponse(
success=False,
message="查询失败",
error=str(e),
)
# ==================== FastAPI端点 ====================
# 在 mcp_server.py 中添加以下代码:
"""
from mcp_chat_endpoint import MCPChatAssistant, ChatRequest, ChatResponse
# 创建聊天助手实例
chat_assistant = MCPChatAssistant(provider="qwen") # 或 "openai", "deepseek"
@app.post("/chat", response_model=ChatResponse)
async def chat_endpoint(request: ChatRequest):
\"\"\"智能对话端点 - 使用LLM理解意图并调用工具\"\"\"
logger.info(f"Chat request: {request.message}")
# 获取可用工具列表
tools = [tool.dict() for tool in TOOLS]
# 调用聊天助手
response = await chat_assistant.chat(
user_message=request.message,
conversation_history=request.conversation_history,
tools=tools,
)
return response
"""

View File

@@ -14,6 +14,8 @@ import logging
import httpx import httpx
from enum import Enum from enum import Enum
import mcp_database as db import mcp_database as db
from openai import OpenAI
import json
# 配置日志 # 配置日志
logging.basicConfig(level=logging.INFO) logging.basicConfig(level=logging.INFO)
@@ -47,6 +49,22 @@ class ServiceEndpoints:
# HTTP客户端配置 # HTTP客户端配置
HTTP_CLIENT = httpx.AsyncClient(timeout=60.0) HTTP_CLIENT = httpx.AsyncClient(timeout=60.0)
# ==================== Agent系统配置 ====================
# Kimi 配置 - 用于计划制定和深度推理
KIMI_CONFIG = {
"api_key": "sk-TzB4VYJfCoXGcGrGMiewukVRzjuDsbVCkaZXi2LvkS8s60E5",
"base_url": "https://api.moonshot.cn/v1",
"model": "kimi-k2-thinking", # 思考模型
}
# DeepMoney 配置 - 用于新闻总结
DEEPMONEY_CONFIG = {
"api_key": "", # 空值
"base_url": "http://111.62.35.50:8000/v1",
"model": "deepmoney",
}
# ==================== MCP协议数据模型 ==================== # ==================== MCP协议数据模型 ====================
class ToolParameter(BaseModel): class ToolParameter(BaseModel):
@@ -74,6 +92,44 @@ class ToolCallResponse(BaseModel):
error: Optional[str] = None error: Optional[str] = None
metadata: Optional[Dict[str, Any]] = None metadata: Optional[Dict[str, Any]] = None
# ==================== Agent系统数据模型 ====================
class ToolCall(BaseModel):
"""工具调用"""
tool: str
arguments: Dict[str, Any]
reason: str
class ExecutionPlan(BaseModel):
"""执行计划"""
goal: str
steps: List[ToolCall]
reasoning: str
class StepResult(BaseModel):
"""单步执行结果"""
step_index: int
tool: str
arguments: Dict[str, Any]
status: Literal["success", "failed", "skipped"]
result: Optional[Any] = None
error: Optional[str] = None
execution_time: float = 0
class AgentResponse(BaseModel):
"""Agent响应"""
success: bool
message: str
plan: Optional[ExecutionPlan] = None
step_results: List[StepResult] = []
final_summary: Optional[str] = None
metadata: Optional[Dict[str, Any]] = None
class AgentChatRequest(BaseModel):
"""聊天请求"""
message: str
conversation_history: List[Dict[str, str]] = []
# ==================== MCP工具定义 ==================== # ==================== MCP工具定义 ====================
TOOLS: List[ToolDefinition] = [ TOOLS: List[ToolDefinition] = [
@@ -932,6 +988,384 @@ TOOL_HANDLERS = {
"get_stock_comparison": handle_get_stock_comparison, "get_stock_comparison": handle_get_stock_comparison,
} }
# ==================== Agent系统实现 ====================
class MCPAgentIntegrated:
"""集成版 MCP Agent - 使用 Kimi 和 DeepMoney"""
def __init__(self):
# 初始化 Kimi 客户端(计划制定)
self.kimi_client = OpenAI(
api_key=KIMI_CONFIG["api_key"],
base_url=KIMI_CONFIG["base_url"],
)
self.kimi_model = KIMI_CONFIG["model"]
# 初始化 DeepMoney 客户端(新闻总结)
self.deepmoney_client = OpenAI(
api_key=DEEPMONEY_CONFIG["api_key"],
base_url=DEEPMONEY_CONFIG["base_url"],
)
self.deepmoney_model = DEEPMONEY_CONFIG["model"]
def get_planning_prompt(self, tools: List[dict]) -> str:
"""获取计划制定的系统提示词"""
tools_desc = "\n\n".join([
f"**{tool['name']}**\n"
f"描述:{tool['description']}\n"
f"参数:{json.dumps(tool['parameters'], ensure_ascii=False, indent=2)}"
for tool in tools
])
return f"""你是一个专业的金融研究助手。根据用户问题,制定详细的执行计划。
## 可用工具
{tools_desc}
## 特殊工具
- **summarize_news**: 使用 DeepMoney 模型总结新闻数据
- 参数: {{"data": "新闻列表JSON", "focus": "关注点"}}
- 适用场景: 当需要总结新闻、研报等文本数据时
## 重要知识
- 贵州茅台: 600519
- 涨停: 涨幅约10%
- 概念板块: 相同题材股票分类
## 任务
分析用户问题,制定执行计划。返回 JSON
```json
{{
"goal": "用户目标",
"reasoning": "分析思路",
"steps": [
{{
"tool": "工具名",
"arguments": {{"参数": ""}},
"reason": "原因"
}}
]
}}
```
## 规划原则
1. 先收集数据,再分析总结
2. 使用 summarize_news 总结新闻类数据
3. 不超过5个步骤
4. 最后一步通常是总结
## 示例
用户:"贵州茅台最近有什么新闻"
计划:
```json
{{
"goal": "查询并总结贵州茅台最新新闻",
"reasoning": "先搜索新闻,再用 DeepMoney 总结",
"steps": [
{{
"tool": "search_china_news",
"arguments": {{"query": "贵州茅台", "top_k": 10}},
"reason": "搜索贵州茅台相关新闻"
}},
{{
"tool": "summarize_news",
"arguments": {{
"data": "前面的新闻数据",
"focus": "贵州茅台的重要动态和市场影响"
}},
"reason": "使用DeepMoney总结新闻要点"
}}
]
}}
```
只返回JSON不要其他内容。"""
async def create_plan(self, user_query: str, tools: List[dict]) -> ExecutionPlan:
"""阶段1: 使用 Kimi 创建执行计划(带思考过程)"""
logger.info(f"[Planning] Kimi开始制定计划: {user_query}")
messages = [
{"role": "system", "content": self.get_planning_prompt(tools)},
{"role": "user", "content": user_query},
]
# 使用 Kimi 思考模型
response = self.kimi_client.chat.completions.create(
model=self.kimi_model,
messages=messages,
temperature=1.0, # Kimi 推荐
max_tokens=16000, # 足够容纳 reasoning_content
)
choice = response.choices[0]
message = choice.message
# 提取思考过程
reasoning_content = ""
if hasattr(message, "reasoning_content"):
reasoning_content = getattr(message, "reasoning_content")
logger.info(f"[Planning] Kimi思考过程: {reasoning_content[:200]}...")
# 提取计划内容
plan_json = message.content.strip()
# 清理可能的代码块标记
if "```json" in plan_json:
plan_json = plan_json.split("```json")[1].split("```")[0].strip()
elif "```" in plan_json:
plan_json = plan_json.split("```")[1].split("```")[0].strip()
plan_data = json.loads(plan_json)
plan = ExecutionPlan(
goal=plan_data["goal"],
reasoning=plan_data.get("reasoning", "") + "\n\n" + (reasoning_content[:500] if reasoning_content else ""),
steps=[ToolCall(**step) for step in plan_data["steps"]],
)
logger.info(f"[Planning] 计划制定完成: {len(plan.steps)}")
return plan
async def execute_tool(
self,
tool_name: str,
arguments: Dict[str, Any],
tool_handlers: Dict[str, Any],
) -> Dict[str, Any]:
"""执行单个工具"""
# 特殊工具summarize_news使用 DeepMoney
if tool_name == "summarize_news":
return await self.summarize_news_with_deepmoney(
data=arguments.get("data", ""),
focus=arguments.get("focus", "关键信息"),
)
# 调用 MCP 工具
handler = tool_handlers.get(tool_name)
if not handler:
raise ValueError(f"Tool '{tool_name}' not found")
result = await handler(arguments)
return result
async def summarize_news_with_deepmoney(self, data: str, focus: str) -> str:
"""使用 DeepMoney 模型总结新闻"""
logger.info(f"[DeepMoney] 总结新闻,关注点: {focus}")
messages = [
{
"role": "system",
"content": "你是一个专业的金融新闻分析师,擅长提取关键信息并进行总结。"
},
{
"role": "user",
"content": f"请总结以下新闻数据,关注点:{focus}\n\n数据:\n{data[:3000]}"
},
]
try:
response = self.deepmoney_client.chat.completions.create(
model=self.deepmoney_model,
messages=messages,
temperature=0.7,
max_tokens=1000,
)
summary = response.choices[0].message.content
logger.info(f"[DeepMoney] 总结完成")
return summary
except Exception as e:
logger.error(f"[DeepMoney] 总结失败: {str(e)}")
# 降级:返回简化摘要
return f"新闻总结失败,原始数据:{data[:500]}..."
async def execute_plan(
self,
plan: ExecutionPlan,
tool_handlers: Dict[str, Any],
) -> List[StepResult]:
"""阶段2: 执行计划"""
logger.info(f"[Execution] 开始执行: {len(plan.steps)}")
results = []
collected_data = {}
for i, step in enumerate(plan.steps):
logger.info(f"[Execution] 步骤 {i+1}/{len(plan.steps)}: {step.tool}")
start_time = datetime.now()
try:
# 替换占位符
arguments = step.arguments.copy()
# 如果参数值是 "前面的新闻数据" 或 "前面收集的所有数据"
if step.tool == "summarize_news":
if arguments.get("data") in ["前面的新闻数据", "前面收集的所有数据"]:
# 将收集的数据传递
arguments["data"] = json.dumps(collected_data, ensure_ascii=False, indent=2)
# 执行工具
result = await self.execute_tool(step.tool, arguments, tool_handlers)
execution_time = (datetime.now() - start_time).total_seconds()
step_result = StepResult(
step_index=i,
tool=step.tool,
arguments=arguments,
status="success",
result=result,
execution_time=execution_time,
)
results.append(step_result)
# 收集数据
collected_data[f"step_{i+1}_{step.tool}"] = result
logger.info(f"[Execution] 步骤 {i+1} 完成: {execution_time:.2f}s")
except Exception as e:
logger.error(f"[Execution] 步骤 {i+1} 失败: {str(e)}")
execution_time = (datetime.now() - start_time).total_seconds()
step_result = StepResult(
step_index=i,
tool=step.tool,
arguments=step.arguments,
status="failed",
error=str(e),
execution_time=execution_time,
)
results.append(step_result)
# 继续执行其他步骤
continue
logger.info(f"[Execution] 执行完成")
return results
async def generate_final_summary(
self,
user_query: str,
plan: ExecutionPlan,
step_results: List[StepResult],
) -> str:
"""阶段3: 使用 Kimi 生成最终总结"""
logger.info("[Summary] Kimi生成最终总结")
# 收集成功的结果
successful_results = [r for r in step_results if r.status == "success"]
if not successful_results:
return "很抱歉,所有步骤都执行失败,无法生成分析报告。"
# 构建结果文本(精简版)
results_text = "\n\n".join([
f"**步骤 {r.step_index + 1}: {r.tool}**\n"
f"结果: {str(r.result)[:800]}..."
for r in successful_results[:3] # 只取前3个避免超长
])
messages = [
{
"role": "system",
"content": "你是专业的金融研究助手。根据执行结果,生成简洁清晰的报告。"
},
{
"role": "user",
"content": f"""用户问题:{user_query}
执行计划:{plan.goal}
执行结果:
{results_text}
请生成专业的分析报告300字以内"""
},
]
try:
response = self.kimi_client.chat.completions.create(
model="kimi-k2-turbpreview", # 使用非思考模型,更快
messages=messages,
temperature=0.7,
max_tokens=1000,
)
summary = response.choices[0].message.content
logger.info("[Summary] 总结完成")
return summary
except Exception as e:
logger.error(f"[Summary] 总结失败: {str(e)}")
# 降级:返回最后一步的结果
if successful_results:
last_result = successful_results[-1]
if isinstance(last_result.result, str):
return last_result.result
else:
return json.dumps(last_result.result, ensure_ascii=False, indent=2)
return "总结生成失败"
async def process_query(
self,
user_query: str,
tools: List[dict],
tool_handlers: Dict[str, Any],
) -> AgentResponse:
"""主流程"""
logger.info(f"[Agent] 处理查询: {user_query}")
try:
# 阶段1: Kimi 制定计划
plan = await self.create_plan(user_query, tools)
# 阶段2: 执行工具
step_results = await self.execute_plan(plan, tool_handlers)
# 阶段3: Kimi 生成总结
final_summary = await self.generate_final_summary(
user_query, plan, step_results
)
return AgentResponse(
success=True,
message=final_summary,
plan=plan,
step_results=step_results,
final_summary=final_summary,
metadata={
"total_steps": len(plan.steps),
"successful_steps": len([r for r in step_results if r.status == "success"]),
"failed_steps": len([r for r in step_results if r.status == "failed"]),
"total_execution_time": sum(r.execution_time for r in step_results),
"model_used": {
"planning": self.kimi_model,
"summarization": "kimi-k2-turbpreview",
"news_summary": self.deepmoney_model,
},
},
)
except Exception as e:
logger.error(f"[Agent] 错误: {str(e)}", exc_info=True)
return AgentResponse(
success=False,
message=f"处理失败: {str(e)}",
)
# 创建 Agent 实例(全局)
agent = MCPAgentIntegrated()
# ==================== Web聊天接口 ==================== # ==================== Web聊天接口 ====================
class ChatMessage(BaseModel): class ChatMessage(BaseModel):
@@ -965,6 +1399,43 @@ async def chat(request: ChatRequest):
"hint": "Use POST /tools/call to invoke tools" "hint": "Use POST /tools/call to invoke tools"
} }
@app.post("/agent/chat", response_model=AgentResponse)
async def agent_chat(request: AgentChatRequest):
"""智能代理对话端点"""
logger.info(f"Agent chat: {request.message}")
# 获取工具列表
tools = [tool.dict() for tool in TOOLS]
# 添加特殊工具summarize_news
tools.append({
"name": "summarize_news",
"description": "使用 DeepMoney 模型总结新闻数据,提取关键信息",
"parameters": {
"type": "object",
"properties": {
"data": {
"type": "string",
"description": "要总结的新闻数据JSON格式"
},
"focus": {
"type": "string",
"description": "关注点,例如:'市场影响''投资机会'"
}
},
"required": ["data"]
}
})
# 处理查询
response = await agent.process_query(
user_query=request.message,
tools=tools,
tool_handlers=TOOL_HANDLERS,
)
return response
# ==================== 健康检查 ==================== # ==================== 健康检查 ====================
@app.get("/health") @app.get("/health")

View File

@@ -0,0 +1,492 @@
"""
集成到 mcp_server.py 的 Agent 系统
使用 Kimi (kimi-k2-thinking) 和 DeepMoney 两个模型
"""
from openai import OpenAI
from pydantic import BaseModel
from typing import List, Dict, Any, Optional, Literal
from datetime import datetime
import json
import logging
logger = logging.getLogger(__name__)
# ==================== 模型配置 ====================
# Kimi 配置 - 用于计划制定和深度推理
KIMI_CONFIG = {
"api_key": "sk-TzB4VYJfCoXGcGrGMiewukVRzjuDsbVCkaZXi2LvkS8s60E5",
"base_url": "https://api.moonshot.cn/v1",
"model": "kimi-k2-thinking", # 思考模型
}
# DeepMoney 配置 - 用于新闻总结
DEEPMONEY_CONFIG = {
"api_key": "", # 空值
"base_url": "http://111.62.35.50:8000/v1",
"model": "deepmoney",
}
# ==================== 数据模型 ====================
class ToolCall(BaseModel):
"""工具调用"""
tool: str
arguments: Dict[str, Any]
reason: str
class ExecutionPlan(BaseModel):
"""执行计划"""
goal: str
steps: List[ToolCall]
reasoning: str
class StepResult(BaseModel):
"""单步执行结果"""
step_index: int
tool: str
arguments: Dict[str, Any]
status: Literal["success", "failed", "skipped"]
result: Optional[Any] = None
error: Optional[str] = None
execution_time: float = 0
class AgentResponse(BaseModel):
"""Agent响应"""
success: bool
message: str
plan: Optional[ExecutionPlan] = None
step_results: List[StepResult] = []
final_summary: Optional[str] = None
metadata: Optional[Dict[str, Any]] = None
class ChatRequest(BaseModel):
"""聊天请求"""
message: str
conversation_history: List[Dict[str, str]] = []
# ==================== Agent 系统 ====================
class MCPAgentIntegrated:
"""集成版 MCP Agent - 使用 Kimi 和 DeepMoney"""
def __init__(self):
# 初始化 Kimi 客户端(计划制定)
self.kimi_client = OpenAI(
api_key=KIMI_CONFIG["api_key"],
base_url=KIMI_CONFIG["base_url"],
)
self.kimi_model = KIMI_CONFIG["model"]
# 初始化 DeepMoney 客户端(新闻总结)
self.deepmoney_client = OpenAI(
api_key=DEEPMONEY_CONFIG["api_key"],
base_url=DEEPMONEY_CONFIG["base_url"],
)
self.deepmoney_model = DEEPMONEY_CONFIG["model"]
def get_planning_prompt(self, tools: List[dict]) -> str:
"""获取计划制定的系统提示词"""
tools_desc = "\n\n".join([
f"**{tool['name']}**\n"
f"描述:{tool['description']}\n"
f"参数:{json.dumps(tool['parameters'], ensure_ascii=False, indent=2)}"
for tool in tools
])
return f"""你是一个专业的金融研究助手。根据用户问题,制定详细的执行计划。
## 可用工具
{tools_desc}
## 特殊工具
- **summarize_news**: 使用 DeepMoney 模型总结新闻数据
- 参数: {{"data": "新闻列表JSON", "focus": "关注点"}}
- 适用场景: 当需要总结新闻、研报等文本数据时
## 重要知识
- 贵州茅台: 600519
- 涨停: 涨幅约10%
- 概念板块: 相同题材股票分类
## 任务
分析用户问题,制定执行计划。返回 JSON
```json
{{
"goal": "用户目标",
"reasoning": "分析思路",
"steps": [
{{
"tool": "工具名",
"arguments": {{"参数": ""}},
"reason": "原因"
}}
]
}}
```
## 规划原则
1. 先收集数据,再分析总结
2. 使用 summarize_news 总结新闻类数据
3. 不超过5个步骤
4. 最后一步通常是总结
## 示例
用户:"贵州茅台最近有什么新闻"
计划:
```json
{{
"goal": "查询并总结贵州茅台最新新闻",
"reasoning": "先搜索新闻,再用 DeepMoney 总结",
"steps": [
{{
"tool": "search_china_news",
"arguments": {{"query": "贵州茅台", "top_k": 10}},
"reason": "搜索贵州茅台相关新闻"
}},
{{
"tool": "summarize_news",
"arguments": {{
"data": "前面的新闻数据",
"focus": "贵州茅台的重要动态和市场影响"
}},
"reason": "使用DeepMoney总结新闻要点"
}}
]
}}
```
只返回JSON不要其他内容。"""
async def create_plan(self, user_query: str, tools: List[dict]) -> ExecutionPlan:
"""阶段1: 使用 Kimi 创建执行计划(带思考过程)"""
logger.info(f"[Planning] Kimi开始制定计划: {user_query}")
messages = [
{"role": "system", "content": self.get_planning_prompt(tools)},
{"role": "user", "content": user_query},
]
# 使用 Kimi 思考模型
response = self.kimi_client.chat.completions.create(
model=self.kimi_model,
messages=messages,
temperature=1.0, # Kimi 推荐
max_tokens=16000, # 足够容纳 reasoning_content
)
choice = response.choices[0]
message = choice.message
# 提取思考过程
reasoning_content = ""
if hasattr(message, "reasoning_content"):
reasoning_content = getattr(message, "reasoning_content")
logger.info(f"[Planning] Kimi思考过程: {reasoning_content[:200]}...")
# 提取计划内容
plan_json = message.content.strip()
# 清理可能的代码块标记
if "```json" in plan_json:
plan_json = plan_json.split("```json")[1].split("```")[0].strip()
elif "```" in plan_json:
plan_json = plan_json.split("```")[1].split("```")[0].strip()
plan_data = json.loads(plan_json)
plan = ExecutionPlan(
goal=plan_data["goal"],
reasoning=plan_data.get("reasoning", "") + "\n\n" + (reasoning_content[:500] if reasoning_content else ""),
steps=[ToolCall(**step) for step in plan_data["steps"]],
)
logger.info(f"[Planning] 计划制定完成: {len(plan.steps)}")
return plan
async def execute_tool(
self,
tool_name: str,
arguments: Dict[str, Any],
tool_handlers: Dict[str, Any],
) -> Dict[str, Any]:
"""执行单个工具"""
# 特殊工具summarize_news使用 DeepMoney
if tool_name == "summarize_news":
return await self.summarize_news_with_deepmoney(
data=arguments.get("data", ""),
focus=arguments.get("focus", "关键信息"),
)
# 调用 MCP 工具
handler = tool_handlers.get(tool_name)
if not handler:
raise ValueError(f"Tool '{tool_name}' not found")
result = await handler(arguments)
return result
async def summarize_news_with_deepmoney(self, data: str, focus: str) -> str:
"""使用 DeepMoney 模型总结新闻"""
logger.info(f"[DeepMoney] 总结新闻,关注点: {focus}")
messages = [
{
"role": "system",
"content": "你是一个专业的金融新闻分析师,擅长提取关键信息并进行总结。"
},
{
"role": "user",
"content": f"请总结以下新闻数据,关注点:{focus}\n\n数据:\n{data[:3000]}"
},
]
try:
response = self.deepmoney_client.chat.completions.create(
model=self.deepmoney_model,
messages=messages,
temperature=0.7,
max_tokens=1000,
)
summary = response.choices[0].message.content
logger.info(f"[DeepMoney] 总结完成")
return summary
except Exception as e:
logger.error(f"[DeepMoney] 总结失败: {str(e)}")
# 降级:返回简化摘要
return f"新闻总结失败,原始数据:{data[:500]}..."
async def execute_plan(
self,
plan: ExecutionPlan,
tool_handlers: Dict[str, Any],
) -> List[StepResult]:
"""阶段2: 执行计划"""
logger.info(f"[Execution] 开始执行: {len(plan.steps)}")
results = []
collected_data = {}
for i, step in enumerate(plan.steps):
logger.info(f"[Execution] 步骤 {i+1}/{len(plan.steps)}: {step.tool}")
start_time = datetime.now()
try:
# 替换占位符
arguments = step.arguments.copy()
# 如果参数值是 "前面的新闻数据" 或 "前面收集的所有数据"
if step.tool == "summarize_news":
if arguments.get("data") in ["前面的新闻数据", "前面收集的所有数据"]:
# 将收集的数据传递
arguments["data"] = json.dumps(collected_data, ensure_ascii=False, indent=2)
# 执行工具
result = await self.execute_tool(step.tool, arguments, tool_handlers)
execution_time = (datetime.now() - start_time).total_seconds()
step_result = StepResult(
step_index=i,
tool=step.tool,
arguments=arguments,
status="success",
result=result,
execution_time=execution_time,
)
results.append(step_result)
# 收集数据
collected_data[f"step_{i+1}_{step.tool}"] = result
logger.info(f"[Execution] 步骤 {i+1} 完成: {execution_time:.2f}s")
except Exception as e:
logger.error(f"[Execution] 步骤 {i+1} 失败: {str(e)}")
execution_time = (datetime.now() - start_time).total_seconds()
step_result = StepResult(
step_index=i,
tool=step.tool,
arguments=step.arguments,
status="failed",
error=str(e),
execution_time=execution_time,
)
results.append(step_result)
# 继续执行其他步骤
continue
logger.info(f"[Execution] 执行完成")
return results
async def generate_final_summary(
self,
user_query: str,
plan: ExecutionPlan,
step_results: List[StepResult],
) -> str:
"""阶段3: 使用 Kimi 生成最终总结"""
logger.info("[Summary] Kimi生成最终总结")
# 收集成功的结果
successful_results = [r for r in step_results if r.status == "success"]
if not successful_results:
return "很抱歉,所有步骤都执行失败,无法生成分析报告。"
# 构建结果文本(精简版)
results_text = "\n\n".join([
f"**步骤 {r.step_index + 1}: {r.tool}**\n"
f"结果: {str(r.result)[:800]}..."
for r in successful_results[:3] # 只取前3个避免超长
])
messages = [
{
"role": "system",
"content": "你是专业的金融研究助手。根据执行结果,生成简洁清晰的报告。"
},
{
"role": "user",
"content": f"""用户问题:{user_query}
执行计划:{plan.goal}
执行结果:
{results_text}
请生成专业的分析报告300字以内"""
},
]
try:
response = self.kimi_client.chat.completions.create(
model="kimi-k2-turbpreview", # 使用非思考模型,更快
messages=messages,
temperature=0.7,
max_tokens=1000,
)
summary = response.choices[0].message.content
logger.info("[Summary] 总结完成")
return summary
except Exception as e:
logger.error(f"[Summary] 总结失败: {str(e)}")
# 降级:返回最后一步的结果
if successful_results:
last_result = successful_results[-1]
if isinstance(last_result.result, str):
return last_result.result
else:
return json.dumps(last_result.result, ensure_ascii=False, indent=2)
return "总结生成失败"
async def process_query(
self,
user_query: str,
tools: List[dict],
tool_handlers: Dict[str, Any],
) -> AgentResponse:
"""主流程"""
logger.info(f"[Agent] 处理查询: {user_query}")
try:
# 阶段1: Kimi 制定计划
plan = await self.create_plan(user_query, tools)
# 阶段2: 执行工具
step_results = await self.execute_plan(plan, tool_handlers)
# 阶段3: Kimi 生成总结
final_summary = await self.generate_final_summary(
user_query, plan, step_results
)
return AgentResponse(
success=True,
message=final_summary,
plan=plan,
step_results=step_results,
final_summary=final_summary,
metadata={
"total_steps": len(plan.steps),
"successful_steps": len([r for r in step_results if r.status == "success"]),
"failed_steps": len([r for r in step_results if r.status == "failed"]),
"total_execution_time": sum(r.execution_time for r in step_results),
"model_used": {
"planning": self.kimi_model,
"summarization": "kimi-k2-turbpreview",
"news_summary": self.deepmoney_model,
},
},
)
except Exception as e:
logger.error(f"[Agent] 错误: {str(e)}", exc_info=True)
return AgentResponse(
success=False,
message=f"处理失败: {str(e)}",
)
# ==================== 添加到 mcp_server.py ====================
"""
在 mcp_server.py 中添加以下代码:
# 导入 Agent 系统
from mcp_server_agent_integration import MCPAgentIntegrated, ChatRequest, AgentResponse
# 创建 Agent 实例(全局)
agent = MCPAgentIntegrated()
# 添加端点
@app.post("/agent/chat", response_model=AgentResponse)
async def agent_chat(request: ChatRequest):
\"\"\"智能代理对话端点\"\"\"
logger.info(f"Agent chat: {request.message}")
# 获取工具列表
tools = [tool.dict() for tool in TOOLS]
# 添加特殊工具summarize_news
tools.append({
"name": "summarize_news",
"description": "使用 DeepMoney 模型总结新闻数据,提取关键信息",
"parameters": {
"type": "object",
"properties": {
"data": {
"type": "string",
"description": "要总结的新闻数据JSON格式"
},
"focus": {
"type": "string",
"description": "关注点,例如:'市场影响''投资机会'"
}
},
"required": ["data"]
}
})
# 处理查询
response = await agent.process_query(
user_query=request.message,
tools=tools,
tool_handlers=TOOL_HANDLERS,
)
return response
"""

View File

@@ -0,0 +1,576 @@
// src/components/ChatBot/ChatInterfaceV2.js
// 重新设计的聊天界面 - 更漂亮、支持Agent模式
import React, { useState, useRef, useEffect } from 'react';
import {
Box,
Flex,
Input,
IconButton,
VStack,
HStack,
Text,
Spinner,
useColorModeValue,
useToast,
Divider,
Badge,
Button,
Avatar,
Heading,
Progress,
Fade,
} from '@chakra-ui/react';
import { FiSend, FiRefreshCw, FiDownload, FiCpu, FiUser, FiZap } from 'react-icons/fi';
import { PlanCard } from './PlanCard';
import { StepResultCard } from './StepResultCard';
import { mcpService } from '../../services/mcpService';
import { logger } from '../../utils/logger';
/**
* Agent消息类型
*/
const MessageTypes = {
USER: 'user',
AGENT_THINKING: 'agent_thinking',
AGENT_PLAN: 'agent_plan',
AGENT_EXECUTING: 'agent_executing',
AGENT_RESPONSE: 'agent_response',
ERROR: 'error',
};
/**
* 聊天界面V2组件 - Agent模式
*/
export const ChatInterfaceV2 = () => {
const [messages, setMessages] = useState([
{
id: 1,
type: MessageTypes.AGENT_RESPONSE,
content: '你好我是AI投资研究助手。我会通过多步骤分析来帮助你深入了解金融市场。\n\n你可以问我\n• 全面分析某只股票\n• 某个行业的投资机会\n• 今日市场热点\n• 某个概念板块的表现',
timestamp: new Date().toISOString(),
},
]);
const [inputValue, setInputValue] = useState('');
const [isProcessing, setIsProcessing] = useState(false);
const [currentProgress, setCurrentProgress] = useState(0);
const messagesEndRef = useRef(null);
const inputRef = useRef(null);
const toast = useToast();
// 颜色主题
const bgColor = useColorModeValue('gray.50', 'gray.900');
const chatBg = useColorModeValue('white', 'gray.800');
const inputBg = useColorModeValue('white', 'gray.700');
const userBubbleBg = useColorModeValue('blue.500', 'blue.600');
const agentBubbleBg = useColorModeValue('white', 'gray.700');
const borderColor = useColorModeValue('gray.200', 'gray.600');
// 自动滚动到底部
const scrollToBottom = () => {
messagesEndRef.current?.scrollIntoView({ behavior: 'smooth' });
};
useEffect(() => {
scrollToBottom();
}, [messages]);
// 添加消息
const addMessage = (message) => {
setMessages((prev) => [...prev, { ...message, id: Date.now() }]);
};
// 更新最后一条消息
const updateLastMessage = (updates) => {
setMessages((prev) => {
const newMessages = [...prev];
if (newMessages.length > 0) {
newMessages[newMessages.length - 1] = {
...newMessages[newMessages.length - 1],
...updates,
};
}
return newMessages;
});
};
// 发送消息Agent模式
const handleSendMessage = async () => {
if (!inputValue.trim() || isProcessing) return;
const userMessage = {
type: MessageTypes.USER,
content: inputValue,
timestamp: new Date().toISOString(),
};
addMessage(userMessage);
setInputValue('');
setIsProcessing(true);
setCurrentProgress(0);
try {
// 1. 显示思考状态
addMessage({
type: MessageTypes.AGENT_THINKING,
content: '正在分析你的问题...',
timestamp: new Date().toISOString(),
});
setCurrentProgress(10);
// 调用 Agent API
const response = await fetch(`${mcpService.baseURL.replace('/mcp', '')}/mcp/agent/chat`, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({
message: inputValue,
conversation_history: messages.filter(m => m.type === MessageTypes.USER || m.type === MessageTypes.AGENT_RESPONSE).map(m => ({
isUser: m.type === MessageTypes.USER,
content: m.content,
})),
}),
});
if (!response.ok) {
throw new Error('Agent请求失败');
}
const agentResponse = await response.json();
logger.info('Agent response', agentResponse);
// 移除思考消息
setMessages(prev => prev.filter(m => m.type !== MessageTypes.AGENT_THINKING));
if (!agentResponse.success) {
throw new Error(agentResponse.message || '处理失败');
}
setCurrentProgress(30);
// 2. 显示执行计划
if (agentResponse.plan) {
addMessage({
type: MessageTypes.AGENT_PLAN,
content: '已制定执行计划',
plan: agentResponse.plan,
timestamp: new Date().toISOString(),
});
}
setCurrentProgress(40);
// 3. 显示执行过程
if (agentResponse.step_results && agentResponse.step_results.length > 0) {
addMessage({
type: MessageTypes.AGENT_EXECUTING,
content: '正在执行步骤...',
plan: agentResponse.plan,
stepResults: agentResponse.step_results,
timestamp: new Date().toISOString(),
});
// 模拟进度更新
for (let i = 0; i < agentResponse.step_results.length; i++) {
setCurrentProgress(40 + (i + 1) / agentResponse.step_results.length * 50);
await new Promise(resolve => setTimeout(resolve, 100));
}
}
setCurrentProgress(100);
// 移除执行中消息
setMessages(prev => prev.filter(m => m.type !== MessageTypes.AGENT_EXECUTING));
// 4. 显示最终结果
addMessage({
type: MessageTypes.AGENT_RESPONSE,
content: agentResponse.message || agentResponse.final_summary,
plan: agentResponse.plan,
stepResults: agentResponse.step_results,
metadata: agentResponse.metadata,
timestamp: new Date().toISOString(),
});
} catch (error) {
logger.error('Agent chat error', error);
// 移除思考/执行中消息
setMessages(prev => prev.filter(
m => m.type !== MessageTypes.AGENT_THINKING && m.type !== MessageTypes.AGENT_EXECUTING
));
addMessage({
type: MessageTypes.ERROR,
content: `处理失败:${error.message}`,
timestamp: new Date().toISOString(),
});
toast({
title: '处理失败',
description: error.message,
status: 'error',
duration: 3000,
isClosable: true,
});
} finally {
setIsProcessing(false);
setCurrentProgress(0);
inputRef.current?.focus();
}
};
// 处理键盘事件
const handleKeyPress = (e) => {
if (e.key === 'Enter' && !e.shiftKey) {
e.preventDefault();
handleSendMessage();
}
};
// 清空对话
const handleClearChat = () => {
setMessages([
{
id: 1,
type: MessageTypes.AGENT_RESPONSE,
content: '对话已清空。有什么可以帮到你的?',
timestamp: new Date().toISOString(),
},
]);
};
// 导出对话
const handleExportChat = () => {
const chatText = messages
.filter(m => m.type === MessageTypes.USER || m.type === MessageTypes.AGENT_RESPONSE)
.map((msg) => `[${msg.type === MessageTypes.USER ? '用户' : 'AI助手'}] ${msg.content}`)
.join('\n\n');
const blob = new Blob([chatText], { type: 'text/plain' });
const url = URL.createObjectURL(blob);
const a = document.createElement('a');
a.href = url;
a.download = `chat_${new Date().toISOString().slice(0, 10)}.txt`;
a.click();
URL.revokeObjectURL(url);
};
// 快捷问题
const quickQuestions = [
'全面分析贵州茅台这只股票',
'今日涨停股票有哪些亮点',
'新能源概念板块的投资机会',
'半导体行业最新动态',
];
return (
<Flex direction="column" h="100%" bg={bgColor}>
{/* 头部 */}
<Box
bg={chatBg}
borderBottom="1px"
borderColor={borderColor}
px={6}
py={4}
>
<HStack justify="space-between">
<HStack spacing={4}>
<Avatar
size="md"
bg="blue.500"
icon={<FiCpu fontSize="1.5rem" />}
/>
<VStack align="start" spacing={0}>
<Heading size="md">AI投资研究助手</Heading>
<HStack>
<Badge colorScheme="green" fontSize="xs">
<HStack spacing={1}>
<FiZap size={10} />
<span>智能分析</span>
</HStack>
</Badge>
<Text fontSize="xs" color="gray.500">
多步骤深度研究
</Text>
</HStack>
</VStack>
</HStack>
<HStack>
<IconButton
icon={<FiRefreshCw />}
size="sm"
variant="ghost"
aria-label="清空对话"
onClick={handleClearChat}
/>
<IconButton
icon={<FiDownload />}
size="sm"
variant="ghost"
aria-label="导出对话"
onClick={handleExportChat}
/>
</HStack>
</HStack>
{/* 进度条 */}
{isProcessing && (
<Progress
value={currentProgress}
size="xs"
colorScheme="blue"
mt={3}
borderRadius="full"
isAnimated
/>
)}
</Box>
{/* 消息列表 */}
<Box
flex="1"
overflowY="auto"
px={6}
py={4}
css={{
'&::-webkit-scrollbar': {
width: '8px',
},
'&::-webkit-scrollbar-track': {
background: 'transparent',
},
'&::-webkit-scrollbar-thumb': {
background: '#CBD5E0',
borderRadius: '4px',
},
}}
>
<VStack spacing={4} align="stretch">
{messages.map((message) => (
<Fade in key={message.id}>
<MessageRenderer message={message} />
</Fade>
))}
<div ref={messagesEndRef} />
</VStack>
</Box>
{/* 快捷问题 */}
{messages.length <= 2 && !isProcessing && (
<Box px={6} py={3} bg={chatBg} borderTop="1px" borderColor={borderColor}>
<Text fontSize="xs" color="gray.500" mb={2}>💡 试试这些问题</Text>
<Flex wrap="wrap" gap={2}>
{quickQuestions.map((question, idx) => (
<Button
key={idx}
size="sm"
variant="outline"
colorScheme="blue"
fontSize="xs"
onClick={() => {
setInputValue(question);
inputRef.current?.focus();
}}
>
{question}
</Button>
))}
</Flex>
</Box>
)}
{/* 输入框 */}
<Box px={6} py={4} bg={chatBg} borderTop="1px" borderColor={borderColor}>
<Flex>
<Input
ref={inputRef}
value={inputValue}
onChange={(e) => setInputValue(e.target.value)}
onKeyPress={handleKeyPress}
placeholder="输入你的问题,我会进行深度分析..."
bg={inputBg}
border="1px"
borderColor={borderColor}
_focus={{ borderColor: 'blue.500', boxShadow: '0 0 0 1px #3182CE' }}
mr={2}
disabled={isProcessing}
size="lg"
/>
<IconButton
icon={isProcessing ? <Spinner size="sm" /> : <FiSend />}
colorScheme="blue"
aria-label="发送"
onClick={handleSendMessage}
isLoading={isProcessing}
disabled={!inputValue.trim() || isProcessing}
size="lg"
/>
</Flex>
</Box>
</Flex>
);
};
/**
* 消息渲染器
*/
const MessageRenderer = ({ message }) => {
const userBubbleBg = useColorModeValue('blue.500', 'blue.600');
const agentBubbleBg = useColorModeValue('white', 'gray.700');
const borderColor = useColorModeValue('gray.200', 'gray.600');
switch (message.type) {
case MessageTypes.USER:
return (
<Flex justify="flex-end">
<HStack align="flex-start" maxW="75%">
<Box
bg={userBubbleBg}
color="white"
px={4}
py={3}
borderRadius="lg"
boxShadow="md"
>
<Text fontSize="sm" whiteSpace="pre-wrap">
{message.content}
</Text>
</Box>
<Avatar size="sm" bg="blue.500" icon={<FiUser fontSize="1rem" />} />
</HStack>
</Flex>
);
case MessageTypes.AGENT_THINKING:
return (
<Flex justify="flex-start">
<HStack align="flex-start" maxW="75%">
<Avatar size="sm" bg="purple.500" icon={<FiCpu fontSize="1rem" />} />
<Box
bg={agentBubbleBg}
px={4}
py={3}
borderRadius="lg"
borderWidth="1px"
borderColor={borderColor}
boxShadow="sm"
>
<HStack>
<Spinner size="sm" color="purple.500" />
<Text fontSize="sm" color="purple.600">
{message.content}
</Text>
</HStack>
</Box>
</HStack>
</Flex>
);
case MessageTypes.AGENT_PLAN:
return (
<Flex justify="flex-start">
<HStack align="flex-start" maxW="85%">
<Avatar size="sm" bg="blue.500" icon={<FiCpu fontSize="1rem" />} />
<VStack align="stretch" flex={1}>
<PlanCard plan={message.plan} stepResults={[]} />
</VStack>
</HStack>
</Flex>
);
case MessageTypes.AGENT_EXECUTING:
return (
<Flex justify="flex-start">
<HStack align="flex-start" maxW="85%">
<Avatar size="sm" bg="orange.500" icon={<FiCpu fontSize="1rem" />} />
<VStack align="stretch" flex={1} spacing={3}>
<PlanCard plan={message.plan} stepResults={message.stepResults} />
{message.stepResults?.map((result, idx) => (
<StepResultCard key={idx} stepResult={result} />
))}
</VStack>
</HStack>
</Flex>
);
case MessageTypes.AGENT_RESPONSE:
return (
<Flex justify="flex-start">
<HStack align="flex-start" maxW="85%">
<Avatar size="sm" bg="green.500" icon={<FiCpu fontSize="1rem" />} />
<VStack align="stretch" flex={1} spacing={3}>
{/* 最终总结 */}
<Box
bg={agentBubbleBg}
px={4}
py={3}
borderRadius="lg"
borderWidth="1px"
borderColor={borderColor}
boxShadow="md"
>
<Text fontSize="sm" whiteSpace="pre-wrap">
{message.content}
</Text>
{/* 元数据 */}
{message.metadata && (
<HStack mt={3} spacing={4} fontSize="xs" color="gray.500">
<Text>总步骤: {message.metadata.total_steps}</Text>
<Text> {message.metadata.successful_steps}</Text>
{message.metadata.failed_steps > 0 && (
<Text> {message.metadata.failed_steps}</Text>
)}
<Text>耗时: {message.metadata.total_execution_time?.toFixed(1)}s</Text>
</HStack>
)}
</Box>
{/* 执行详情(可选) */}
{message.plan && message.stepResults && message.stepResults.length > 0 && (
<VStack align="stretch" spacing={2}>
<Divider />
<Text fontSize="xs" fontWeight="bold" color="gray.500">
📊 执行详情点击展开查看
</Text>
{message.stepResults.map((result, idx) => (
<StepResultCard key={idx} stepResult={result} />
))}
</VStack>
)}
</VStack>
</HStack>
</Flex>
);
case MessageTypes.ERROR:
return (
<Flex justify="flex-start">
<HStack align="flex-start" maxW="75%">
<Avatar size="sm" bg="red.500" icon={<FiCpu fontSize="1rem" />} />
<Box
bg="red.50"
color="red.700"
px={4}
py={3}
borderRadius="lg"
borderWidth="1px"
borderColor="red.200"
>
<Text fontSize="sm">{message.content}</Text>
</Box>
</HStack>
</Flex>
);
default:
return null;
}
};
export default ChatInterfaceV2;

View File

@@ -0,0 +1,145 @@
// src/components/ChatBot/PlanCard.js
// 执行计划展示卡片
import React from 'react';
import {
Box,
VStack,
HStack,
Text,
Badge,
Accordion,
AccordionItem,
AccordionButton,
AccordionPanel,
AccordionIcon,
Icon,
useColorModeValue,
Divider,
} from '@chakra-ui/react';
import { FiTarget, FiCheckCircle, FiXCircle, FiClock, FiTool } from 'react-icons/fi';
/**
* 执行计划卡片组件
*/
export const PlanCard = ({ plan, stepResults }) => {
const cardBg = useColorModeValue('blue.50', 'blue.900');
const borderColor = useColorModeValue('blue.200', 'blue.700');
const successColor = useColorModeValue('green.500', 'green.300');
const errorColor = useColorModeValue('red.500', 'red.300');
const pendingColor = useColorModeValue('gray.400', 'gray.500');
const getStepStatus = (stepIndex) => {
if (!stepResults || stepResults.length === 0) return 'pending';
const result = stepResults.find(r => r.step_index === stepIndex);
return result ? result.status : 'pending';
};
const getStepIcon = (status) => {
switch (status) {
case 'success':
return FiCheckCircle;
case 'failed':
return FiXCircle;
default:
return FiClock;
}
};
const getStepColor = (status) => {
switch (status) {
case 'success':
return successColor;
case 'failed':
return errorColor;
default:
return pendingColor;
}
};
return (
<Box
bg={cardBg}
borderRadius="lg"
borderWidth="2px"
borderColor={borderColor}
p={4}
mb={4}
boxShadow="md"
>
<VStack align="stretch" spacing={3}>
{/* 目标 */}
<HStack>
<Icon as={FiTarget} color="blue.500" boxSize={5} />
<Text fontWeight="bold" fontSize="md">执行目标</Text>
</HStack>
<Text fontSize="sm" color="gray.600" pl={7}>
{plan.goal}
</Text>
<Divider />
{/* 规划思路 */}
{plan.reasoning && (
<>
<Text fontSize="sm" fontWeight="bold">规划思路</Text>
<Text fontSize="sm" color="gray.600">
{plan.reasoning}
</Text>
<Divider />
</>
)}
{/* 执行步骤 */}
<HStack justify="space-between">
<Text fontSize="sm" fontWeight="bold">执行步骤</Text>
<Badge colorScheme="blue">{plan.steps.length} </Badge>
</HStack>
<VStack align="stretch" spacing={2}>
{plan.steps.map((step, index) => {
const status = getStepStatus(index);
const StepIcon = getStepIcon(status);
const stepColor = getStepColor(status);
return (
<HStack
key={index}
p={2}
bg={useColorModeValue('white', 'gray.700')}
borderRadius="md"
borderWidth="1px"
borderColor={stepColor}
align="flex-start"
>
<Icon as={StepIcon} color={stepColor} boxSize={4} mt={1} />
<VStack align="stretch" flex={1} spacing={1}>
<HStack justify="space-between">
<Text fontSize="sm" fontWeight="bold">
步骤 {index + 1}: {step.tool}
</Text>
<Badge
colorScheme={
status === 'success' ? 'green' :
status === 'failed' ? 'red' : 'gray'
}
fontSize="xs"
>
{status === 'success' ? '✓ 完成' :
status === 'failed' ? '✗ 失败' : '⏳ 等待'}
</Badge>
</HStack>
<Text fontSize="xs" color="gray.600">
{step.reason}
</Text>
</VStack>
</HStack>
);
})}
</VStack>
</VStack>
</Box>
);
};
export default PlanCard;

View File

@@ -0,0 +1,186 @@
// src/components/ChatBot/StepResultCard.js
// 步骤结果展示卡片(可折叠)
import React, { useState } from 'react';
import {
Box,
VStack,
HStack,
Text,
Badge,
Collapse,
Icon,
IconButton,
Code,
useColorModeValue,
Divider,
} from '@chakra-ui/react';
import { FiChevronDown, FiChevronUp, FiCheckCircle, FiXCircle, FiClock, FiDatabase } from 'react-icons/fi';
/**
* 步骤结果卡片组件
*/
export const StepResultCard = ({ stepResult }) => {
const [isExpanded, setIsExpanded] = useState(false);
const cardBg = useColorModeValue('white', 'gray.700');
const borderColor = useColorModeValue('gray.200', 'gray.600');
const successColor = useColorModeValue('green.500', 'green.300');
const errorColor = useColorModeValue('red.500', 'red.300');
const getStatusIcon = () => {
switch (stepResult.status) {
case 'success':
return FiCheckCircle;
case 'failed':
return FiXCircle;
default:
return FiClock;
}
};
const getStatusColor = () => {
switch (stepResult.status) {
case 'success':
return 'green';
case 'failed':
return 'red';
default:
return 'gray';
}
};
const StatusIcon = getStatusIcon();
const statusColorScheme = getStatusColor();
// 格式化数据以便展示
const formatResult = (data) => {
if (typeof data === 'string') return data;
if (Array.isArray(data)) {
return `找到 ${data.length} 条记录`;
}
if (typeof data === 'object') {
return JSON.stringify(data, null, 2);
}
return String(data);
};
return (
<Box
bg={cardBg}
borderRadius="md"
borderWidth="1px"
borderColor={borderColor}
overflow="hidden"
boxShadow="sm"
>
{/* 头部 - 始终可见 */}
<HStack
p={3}
justify="space-between"
cursor="pointer"
onClick={() => setIsExpanded(!isExpanded)}
_hover={{ bg: useColorModeValue('gray.50', 'gray.600') }}
>
<HStack flex={1}>
<Icon as={StatusIcon} color={`${statusColorScheme}.500`} boxSize={5} />
<VStack align="stretch" spacing={0} flex={1}>
<HStack>
<Text fontSize="sm" fontWeight="bold">
步骤 {stepResult.step_index + 1}: {stepResult.tool}
</Text>
<Badge colorScheme={statusColorScheme} fontSize="xs">
{stepResult.status === 'success' ? '成功' :
stepResult.status === 'failed' ? '失败' : '执行中'}
</Badge>
</HStack>
<Text fontSize="xs" color="gray.500">
耗时: {stepResult.execution_time?.toFixed(2)}s
</Text>
</VStack>
</HStack>
<IconButton
icon={<Icon as={isExpanded ? FiChevronUp : FiChevronDown} />}
size="sm"
variant="ghost"
aria-label={isExpanded ? "收起" : "展开"}
/>
</HStack>
{/* 内容 - 可折叠 */}
<Collapse in={isExpanded} animateOpacity>
<Box p={3} pt={0}>
<Divider mb={3} />
{/* 参数 */}
{stepResult.arguments && Object.keys(stepResult.arguments).length > 0 && (
<VStack align="stretch" spacing={2} mb={3}>
<HStack>
<Icon as={FiDatabase} color="blue.500" boxSize={4} />
<Text fontSize="xs" fontWeight="bold">请求参数:</Text>
</HStack>
<Code
p={2}
borderRadius="md"
fontSize="xs"
whiteSpace="pre-wrap"
wordBreak="break-word"
>
{JSON.stringify(stepResult.arguments, null, 2)}
</Code>
</VStack>
)}
{/* 结果或错误 */}
{stepResult.status === 'success' && stepResult.result && (
<VStack align="stretch" spacing={2}>
<Text fontSize="xs" fontWeight="bold">执行结果:</Text>
<Box
maxH="300px"
overflowY="auto"
p={2}
bg={useColorModeValue('gray.50', 'gray.800')}
borderRadius="md"
fontSize="xs"
>
{typeof stepResult.result === 'string' ? (
<Text whiteSpace="pre-wrap">{stepResult.result}</Text>
) : Array.isArray(stepResult.result) ? (
<VStack align="stretch" spacing={2}>
<Text fontWeight="bold">找到 {stepResult.result.length} 条记录:</Text>
{stepResult.result.slice(0, 3).map((item, idx) => (
<Code key={idx} p={2} borderRadius="md" fontSize="xs">
{JSON.stringify(item, null, 2)}
</Code>
))}
{stepResult.result.length > 3 && (
<Text fontSize="xs" color="gray.500">
...还有 {stepResult.result.length - 3} 条记录
</Text>
)}
</VStack>
) : (
<Code whiteSpace="pre-wrap" wordBreak="break-word">
{JSON.stringify(stepResult.result, null, 2)}
</Code>
)}
</Box>
</VStack>
)}
{stepResult.status === 'failed' && stepResult.error && (
<VStack align="stretch" spacing={2}>
<Text fontSize="xs" fontWeight="bold" color="red.500">错误信息:</Text>
<Text fontSize="xs" color="red.600" p={2} bg="red.50" borderRadius="md">
{stepResult.error}
</Text>
</VStack>
)}
</Box>
</Collapse>
</Box>
);
};
export default StepResultCard;

View File

@@ -2,6 +2,10 @@
// 聊天机器人组件统一导出 // 聊天机器人组件统一导出
export { ChatInterface } from './ChatInterface'; export { ChatInterface } from './ChatInterface';
export { ChatInterfaceV2 } from './ChatInterfaceV2';
export { MessageBubble } from './MessageBubble'; export { MessageBubble } from './MessageBubble';
export { PlanCard } from './PlanCard';
export { StepResultCard } from './StepResultCard';
export { ChatInterface as default } from './ChatInterface'; // 默认导出新版本
export { ChatInterfaceV2 as default } from './ChatInterfaceV2';

278
src/services/llmService.js Normal file
View File

@@ -0,0 +1,278 @@
// src/services/llmService.js
// LLM服务层 - 集成AI模型进行对话和工具调用
import axios from 'axios';
import { mcpService } from './mcpService';
import { logger } from '../utils/logger';
/**
* LLM服务配置
*/
const LLM_CONFIG = {
// 可以使用 OpenAI、Claude、通义千问等
provider: 'openai', // 或 'claude', 'qwen'
apiKey: process.env.REACT_APP_OPENAI_API_KEY || '',
apiUrl: 'https://api.openai.com/v1/chat/completions',
model: 'gpt-4o-mini', // 更便宜的模型
};
/**
* LLM服务类
*/
class LLMService {
constructor() {
this.conversationHistory = [];
}
/**
* 构建系统提示词
*/
getSystemPrompt(availableTools) {
return `你是一个专业的金融投资助手。你可以使用以下工具来帮助用户查询信息:
${availableTools.map(tool => `
**${tool.name}**
描述:${tool.description}
参数:${JSON.stringify(tool.parameters, null, 2)}
`).join('\n')}
用户提问时,请按照以下步骤:
1. 理解用户的意图
2. 选择合适的工具(可以多个)
3. 提取工具需要的参数
4. 调用工具后,用自然语言总结结果
回复格式:
- 如果需要调用工具返回JSON格式{"tool": "工具名", "arguments": {...}}
- 如果不需要工具,直接回复自然语言
注意:
- 贵州茅台的股票代码是 600519
- 涨停是指股票当日涨幅达到10%
- 概念板块是指相同题材的股票分类`;
}
/**
* 智能对话 - 使用LLM理解意图并调用工具
*/
async chat(userMessage, conversationHistory = []) {
try {
// 1. 获取可用工具列表
const toolsResult = await mcpService.listTools();
if (!toolsResult.success) {
throw new Error('获取工具列表失败');
}
const availableTools = toolsResult.data;
// 2. 构建对话历史
const messages = [
{
role: 'system',
content: this.getSystemPrompt(availableTools),
},
...conversationHistory.map(msg => ({
role: msg.isUser ? 'user' : 'assistant',
content: msg.content,
})),
{
role: 'user',
content: userMessage,
},
];
// 3. 调用LLM
logger.info('LLMService', '调用LLM', { messageCount: messages.length });
// 注意这里需要配置API密钥
if (!LLM_CONFIG.apiKey) {
// 如果没有配置LLM使用简单的关键词匹配
logger.warn('LLMService', '未配置LLM API密钥使用简单匹配');
return await this.fallbackChat(userMessage);
}
const response = await axios.post(
LLM_CONFIG.apiUrl,
{
model: LLM_CONFIG.model,
messages: messages,
temperature: 0.7,
max_tokens: 1000,
},
{
headers: {
'Content-Type': 'application/json',
'Authorization': `Bearer ${LLM_CONFIG.apiKey}`,
},
timeout: 30000,
}
);
const aiResponse = response.data.choices[0].message.content;
logger.info('LLMService', 'LLM响应', { response: aiResponse });
// 4. 解析LLM响应
// 如果LLM返回工具调用指令
try {
const toolCall = JSON.parse(aiResponse);
if (toolCall.tool && toolCall.arguments) {
// 调用MCP工具
const toolResult = await mcpService.callTool(toolCall.tool, toolCall.arguments);
if (!toolResult.success) {
return {
success: false,
error: toolResult.error,
};
}
// 5. 让LLM总结工具结果
const summaryMessages = [
...messages,
{
role: 'assistant',
content: aiResponse,
},
{
role: 'system',
content: `工具 ${toolCall.tool} 返回的数据:\n${JSON.stringify(toolResult.data, null, 2)}\n\n请用自然语言总结这些数据,给用户一个简洁清晰的回复。`,
},
];
const summaryResponse = await axios.post(
LLM_CONFIG.apiUrl,
{
model: LLM_CONFIG.model,
messages: summaryMessages,
temperature: 0.7,
max_tokens: 500,
},
{
headers: {
'Content-Type': 'application/json',
'Authorization': `Bearer ${LLM_CONFIG.apiKey}`,
},
timeout: 30000,
}
);
const summary = summaryResponse.data.choices[0].message.content;
return {
success: true,
data: {
message: summary,
rawData: toolResult.data,
toolUsed: toolCall.tool,
},
};
}
} catch (parseError) {
// 不是JSON格式说明是直接回复
return {
success: true,
data: {
message: aiResponse,
},
};
}
// 默认返回LLM的直接回复
return {
success: true,
data: {
message: aiResponse,
},
};
} catch (error) {
logger.error('LLMService', 'chat error', error);
return {
success: false,
error: error.message || '对话处理失败',
};
}
}
/**
* 降级方案简单的关键词匹配当没有配置LLM时
*/
async fallbackChat(userMessage) {
logger.info('LLMService', '使用降级方案', { message: userMessage });
// 使用原有的简单匹配逻辑
if (userMessage.includes('新闻') || userMessage.includes('资讯')) {
const result = await mcpService.callTool('search_china_news', {
query: userMessage.replace(/新闻|资讯/g, '').trim(),
top_k: 5,
});
return this.formatFallbackResponse(result, '新闻搜索');
} else if (userMessage.includes('概念') || userMessage.includes('板块')) {
const query = userMessage.replace(/概念|板块/g, '').trim();
const result = await mcpService.callTool('search_concepts', {
query,
size: 5,
sort_by: 'change_pct',
});
return this.formatFallbackResponse(result, '概念搜索');
} else if (userMessage.includes('涨停')) {
const query = userMessage.replace(/涨停/g, '').trim();
const result = await mcpService.callTool('search_limit_up_stocks', {
query,
mode: 'hybrid',
page_size: 5,
});
return this.formatFallbackResponse(result, '涨停分析');
} else if (/^[0-9]{6}$/.test(userMessage.trim())) {
// 6位数字 = 股票代码
const result = await mcpService.callTool('get_stock_basic_info', {
seccode: userMessage.trim(),
});
return this.formatFallbackResponse(result, '股票信息');
} else if (userMessage.includes('茅台') || userMessage.includes('贵州茅台')) {
// 特殊处理茅台
const result = await mcpService.callTool('get_stock_basic_info', {
seccode: '600519',
});
return this.formatFallbackResponse(result, '贵州茅台股票信息');
} else {
// 默认:搜索新闻
const result = await mcpService.callTool('search_china_news', {
query: userMessage,
top_k: 5,
});
return this.formatFallbackResponse(result, '新闻搜索');
}
}
/**
* 格式化降级响应
*/
formatFallbackResponse(result, action) {
if (!result.success) {
return {
success: false,
error: result.error,
};
}
return {
success: true,
data: {
message: `已为您完成${action},找到以下结果:`,
rawData: result.data,
},
};
}
/**
* 清除对话历史
*/
clearHistory() {
this.conversationHistory = [];
}
}
// 导出单例
export const llmService = new LLMService();
export default LLMService;

View File

@@ -10,7 +10,7 @@ import {
VStack, VStack,
useColorModeValue, useColorModeValue,
} from '@chakra-ui/react'; } from '@chakra-ui/react';
import ChatInterface from '../../components/ChatBot'; import { ChatInterfaceV2 } from '../../components/ChatBot';
/** /**
* Agent聊天页面 * Agent聊天页面
@@ -42,7 +42,7 @@ const AgentChat = () => {
h="calc(100vh - 300px)" h="calc(100vh - 300px)"
minH="600px" minH="600px"
> >
<ChatInterface /> <ChatInterfaceV2 />
</Box> </Box>
</VStack> </VStack>
</Container> </Container>