update pay function

This commit is contained in:
2025-11-28 14:49:16 +08:00
parent 18f8f75116
commit 9b7a221315
11 changed files with 2917 additions and 46 deletions

View File

@@ -2337,6 +2337,637 @@ async def search_chat_history(user_id: str, query: str, top_k: int = 10):
raise HTTPException(status_code=500, detail=str(e))
# ==================== 投研会议室系统 ====================
# 投研会议室角色配置
MEETING_ROLES = {
"buffett": {
"id": "buffett",
"name": "巴菲特",
"nickname": "唱多者",
"role_type": "bull", # 多头
"avatar": "/avatars/buffett.png",
"model": "kimi-k2-thinking",
"color": "#10B981", # 绿色(上涨)
"description": "主观多头,善于分析事件的潜在利好和长期价值",
"system_prompt": """你是"巴菲特",一位资深的价值投资者和主观多头分析师。
你的特点:
1. 善于发现事件和公司的潜在利好因素
2. 关注长期价值,不被短期波动干扰
3. 分析公司的护城河、竞争优势和管理层质量
4. 对市场保持乐观但理性的态度
分析风格:
- 重点挖掘利好因素和投资机会
- 从产业链、市场格局、政策支持等角度分析
- 给出清晰的看多逻辑和目标预期
- 语言风格:稳重、专业、富有洞察力
注意你的发言要简洁有力每次发言控制在200字以内。直接表达观点不要客套。"""
},
"big_short": {
"id": "big_short",
"name": "大空头",
"nickname": "大空头",
"role_type": "bear", # 空头
"avatar": "/avatars/big_short.png",
"model": "kimi-k2-thinking",
"color": "#EF4444", # 红色(下跌)
"description": "善于分析事件和财报中的风险因素,帮助投资者避雷",
"system_prompt": """你是"大空头",一位专业的风险分析师和空头研究员。
你的特点:
1. 善于发现被市场忽视的风险因素
2. 擅长财报分析,发现财务造假和粉饰的迹象
3. 关注行业天花板、竞争加剧、估值泡沫等问题
4. 对市场保持警惕,帮助投资者避雷
分析风格:
- 重点挖掘风险因素和潜在隐患
- 从财务数据、行业周期、估值水平等角度分析
- 给出清晰的风险提示和规避建议
- 语言风格:犀利、直接、善于质疑
注意你的发言要简洁有力每次发言控制在200字以内。直接指出风险不要绕弯子。"""
},
"simons": {
"id": "simons",
"name": "量化分析员",
"nickname": "西蒙斯",
"role_type": "quant", # 量化
"avatar": "/avatars/simons.png",
"model": "deepseek-v3",
"color": "#3B82F6", # 蓝色(中性)
"description": "中性立场,使用量化分析工具分析技术指标",
"system_prompt": """你是"量化分析员"(昵称:西蒙斯),一位专业的量化交易研究员。
你的特点:
1. 使用数据和技术指标说话,保持中性立场
2. 擅长均线分析、量价关系、动能指标等技术分析
3. 关注市场情绪、资金流向、筹码分布等量化因素
4. 用概率思维看待市场,不做主观臆断
分析风格:
- 基于技术指标给出客观分析
- 使用具体数据支撑观点5日均线、MACD、RSI等
- 给出量化的买卖信号和风险评估
- 语言风格:理性、客观、数据驱动
注意你的发言要简洁有力每次发言控制在200字以内。多用数据说话少发表主观意见。"""
},
"leek": {
"id": "leek",
"name": "韭菜",
"nickname": "牢大",
"role_type": "retail", # 散户
"avatar": "/avatars/leek.png",
"model": "deepmoney",
"color": "#F59E0B", # 黄色
"description": "贪婪又讨厌亏损,热爱追涨杀跌的典型散户",
"system_prompt": """你是"韭菜"(昵称:牢大),一个典型的散户投资者。
你的特点:
1. 贪婪但又害怕亏损,典型的追涨杀跌
2. 容易被市场情绪影响,看到涨就想追,看到跌就想跑
3. 喜欢听小道消息,容易被"内幕"吸引
4. 短线思维,缺乏耐心,期望一夜暴富
分析风格:
- 用最朴素的散户思维来分析问题
- 经常关注"这个能赚多少""会不会跌"
- 容易情绪化,看涨时过度乐观,看跌时过度悲观
- 语言风格:口语化、情绪化、接地气
注意你的发言要简洁直接每次发言控制在150字以内。展现真实散户的心态可以有些搞笑但不要太出格。"""
},
"fund_manager": {
"id": "fund_manager",
"name": "基金经理",
"nickname": "决策者",
"role_type": "manager", # 管理者
"avatar": "/avatars/fund_manager.png",
"model": "kimi-k2-thinking",
"color": "#8B5CF6", # 紫色
"description": "总结其他人的发言做出最终决策",
"system_prompt": """你是"基金经理",投研会议的主持人和最终决策者。
你的角色:
1. 综合各方观点,做出理性判断
2. 平衡多空观点,识别有价值的分析
3. 特别注意:韭菜的观点通常是反向指标
4. 给出专业、负责任的投资建议
决策风格:
- 综合考虑基本面、技术面、情绪面
- 权衡风险与收益,给出明确的投资建议
- 指出讨论中的关键洞察和需要注意的风险
- 语言风格:权威、专业、全面
决策输出格式:
1. 综合评估:对讨论议题的整体判断
2. 关键观点:各方有价值的观点总结
3. 风险提示:需要注意的主要风险
4. 操作建议:具体的投资建议(买入/持有/观望/卖出)
5. 信心指数对这个结论的信心程度1-10分
注意如果讨论还不够充分你可以要求继续讨论。每次发言控制在300字以内。"""
}
}
# 投研会议室专用模型配置(扩展现有配置)
MEETING_MODEL_CONFIGS = {
**MODEL_CONFIGS,
"deepseek-v3": {
"api_key": "sk-1cf3dfadf7244a8680cd0a60da6f1efd",
"base_url": "https://api.deepseek.com/v1",
"model": "deepseek-chat",
}
}
class MeetingRoleMessage(BaseModel):
"""会议角色消息"""
role_id: str
role_name: str
nickname: str
avatar: str
color: str
content: str
timestamp: str
round_number: int # 第几轮讨论
class MeetingRequest(BaseModel):
"""投研会议请求"""
topic: str # 用户提出的议题
user_id: str = "anonymous"
user_nickname: str = "匿名用户"
session_id: Optional[str] = None
user_message: Optional[str] = None # 用户在讨论中的插话
conversation_history: List[Dict[str, Any]] = [] # 之前的讨论历史
class MeetingResponse(BaseModel):
"""投研会议响应"""
success: bool
session_id: str
messages: List[Dict[str, Any]] # 本轮所有角色的发言
round_number: int # 当前轮次
is_concluded: bool # 是否已得出结论
conclusion: Optional[Dict[str, Any]] = None # 基金经理的结论(如果有)
async def call_role_llm(role_id: str, prompt: str, context: str = "") -> str:
"""调用特定角色的LLM生成回复"""
role = MEETING_ROLES.get(role_id)
if not role:
raise ValueError(f"Unknown role: {role_id}")
model_name = role["model"]
model_config = MEETING_MODEL_CONFIGS.get(model_name, MODEL_CONFIGS["kimi-k2-thinking"])
try:
client = OpenAI(
api_key=model_config["api_key"],
base_url=model_config["base_url"]
)
messages = [
{"role": "system", "content": role["system_prompt"]},
]
if context:
messages.append({"role": "user", "content": f"当前讨论背景:\n{context}"})
messages.append({"role": "user", "content": prompt})
response = client.chat.completions.create(
model=model_config["model"],
messages=messages,
temperature=0.7,
max_tokens=500,
)
return response.choices[0].message.content.strip()
except Exception as e:
logger.error(f"调用角色 {role_id} 的 LLM 失败: {e}")
return f"[{role['name']}暂时无法发言,请稍后重试]"
async def determine_speaking_order(topic: str) -> List[str]:
"""使用 K2 模型决定发言顺序"""
try:
client = OpenAI(
api_key=MODEL_CONFIGS["kimi-k2-thinking"]["api_key"],
base_url=MODEL_CONFIGS["kimi-k2-thinking"]["base_url"]
)
response = client.chat.completions.create(
model=MODEL_CONFIGS["kimi-k2-thinking"]["model"],
messages=[
{
"role": "system",
"content": """你是一个会议主持助手。根据用户提出的议题,决定投研会议中各角色的最佳发言顺序。
可用角色(不包括基金经理,他最后总结):
- buffett: 巴菲特(主观多头,分析利好)
- big_short: 大空头(风险分析师)
- simons: 量化分析员(技术分析)
- leek: 韭菜(散户视角)
根据议题性质,安排最合适的发言顺序。比如:
- 如果是分析某公司/事件,建议先让多头分析利好,再让空头分析风险
- 如果是技术走势问题,可以先让量化分析
- 韭菜可以随时插入,提供散户视角
只需要返回角色ID列表用逗号分隔例如buffett,simons,big_short,leek"""
},
{"role": "user", "content": f"议题:{topic}"}
],
temperature=0.3,
max_tokens=100,
)
order_str = response.choices[0].message.content.strip()
# 解析返回的顺序
order = [r.strip() for r in order_str.split(",") if r.strip() in MEETING_ROLES]
# 确保所有非管理者角色都在列表中
for role_id, role in MEETING_ROLES.items():
if role["role_type"] != "manager" and role_id not in order:
order.append(role_id)
return order
except Exception as e:
logger.error(f"决定发言顺序失败: {e}")
# 返回默认顺序
return ["buffett", "big_short", "simons", "leek"]
async def check_conclusion_ready(discussion_history: str, topic: str) -> tuple[bool, str]:
"""基金经理判断是否可以得出结论"""
try:
client = OpenAI(
api_key=MODEL_CONFIGS["kimi-k2-thinking"]["api_key"],
base_url=MODEL_CONFIGS["kimi-k2-thinking"]["base_url"]
)
response = client.chat.completions.create(
model=MODEL_CONFIGS["kimi-k2-thinking"]["model"],
messages=[
{
"role": "system",
"content": MEETING_ROLES["fund_manager"]["system_prompt"]
},
{
"role": "user",
"content": f"""议题:{topic}
目前的讨论内容:
{discussion_history}
请判断:
1. 目前的讨论是否足够充分,可以得出最终结论?
2. 如果可以,请给出你的最终决策。
3. 如果不可以,请说明还需要讨论什么,并要求继续讨论。
请以JSON格式回复
{{
"can_conclude": true/false,
"reasoning": "判断理由",
"conclusion": "如果可以结论,这里是你的完整决策;如果不能,这里是需要继续讨论的方向"
}}"""
}
],
temperature=0.5,
max_tokens=800,
)
result = response.choices[0].message.content.strip()
# 尝试解析JSON
try:
# 处理可能的 markdown 代码块
if "```json" in result:
result = result.split("```json")[1].split("```")[0].strip()
elif "```" in result:
result = result.split("```")[1].split("```")[0].strip()
data = json.loads(result)
return data.get("can_conclude", False), data.get("conclusion", result)
except json.JSONDecodeError:
# 如果JSON解析失败直接返回内容
return True, result
except Exception as e:
logger.error(f"检查结论状态失败: {e}")
return True, "基于目前的讨论,建议投资者谨慎对待,继续关注后续发展。"
@app.post("/agent/meeting/start")
async def start_investment_meeting(request: MeetingRequest):
"""
启动投研会议
第一轮:所有角色(除基金经理外)依次发言
"""
logger.info(f"启动投研会议: {request.topic} (user: {request.user_id})")
session_id = request.session_id or str(uuid.uuid4())
messages = []
round_number = 1
# 决定发言顺序
speaking_order = await determine_speaking_order(request.topic)
logger.info(f"发言顺序: {speaking_order}")
# 构建讨论上下文
context = f"议题:{request.topic}\n\n这是第一轮讨论,请针对议题发表你的观点。"
# 依次让每个角色发言
for role_id in speaking_order:
role = MEETING_ROLES[role_id]
if role["role_type"] == "manager":
continue # 基金经理不在第一轮发言
# 加入之前角色的发言作为上下文
prev_context = context
if messages:
prev_context += "\n\n其他人的观点:\n"
for msg in messages:
prev_context += f"- {msg['role_name']}{msg['content']}\n"
# 调用LLM生成发言
content = await call_role_llm(role_id, request.topic, prev_context)
message = {
"role_id": role_id,
"role_name": role["name"],
"nickname": role["nickname"],
"avatar": role["avatar"],
"color": role["color"],
"content": content,
"timestamp": datetime.now().isoformat(),
"round_number": round_number
}
messages.append(message)
# 第一轮结束后,基金经理判断是否可以得出结论
discussion_summary = "\n".join([
f"{msg['role_name']}】:{msg['content']}"
for msg in messages
])
can_conclude, conclusion_content = await check_conclusion_ready(discussion_summary, request.topic)
# 添加基金经理的发言
fund_manager = MEETING_ROLES["fund_manager"]
fund_manager_message = {
"role_id": "fund_manager",
"role_name": fund_manager["name"],
"nickname": fund_manager["nickname"],
"avatar": fund_manager["avatar"],
"color": fund_manager["color"],
"content": conclusion_content,
"timestamp": datetime.now().isoformat(),
"round_number": round_number,
"is_conclusion": can_conclude
}
messages.append(fund_manager_message)
return {
"success": True,
"session_id": session_id,
"messages": messages,
"round_number": round_number,
"is_concluded": can_conclude,
"conclusion": fund_manager_message if can_conclude else None
}
@app.post("/agent/meeting/continue")
async def continue_investment_meeting(request: MeetingRequest):
"""
继续投研会议讨论
根据之前的讨论历史,继续新一轮讨论
支持用户在讨论中插话
"""
logger.info(f"继续投研会议: {request.topic} (round: {len(request.conversation_history) // 5 + 1})")
session_id = request.session_id or str(uuid.uuid4())
messages = []
round_number = len(request.conversation_history) // 5 + 2 # 估算轮次
# 构建历史讨论上下文
history_context = "历史讨论:\n"
for msg in request.conversation_history:
history_context += f"{msg.get('role_name', '未知')}】:{msg.get('content', '')}\n"
# 如果用户有插话,先处理用户消息
if request.user_message:
history_context += f"\n【用户】:{request.user_message}\n"
messages.append({
"role_id": "user",
"role_name": "用户",
"nickname": request.user_nickname,
"avatar": "",
"color": "#6366F1",
"content": request.user_message,
"timestamp": datetime.now().isoformat(),
"round_number": round_number
})
# 新一轮讨论的发言顺序
speaking_order = await determine_speaking_order(request.topic)
# 依次让每个角色发言
for role_id in speaking_order:
role = MEETING_ROLES[role_id]
if role["role_type"] == "manager":
continue
# 构建本次发言的上下文
current_context = f"议题:{request.topic}\n\n{history_context}"
if messages:
current_context += "\n本轮讨论:\n"
for msg in messages:
if msg["role_id"] != "user":
current_context += f"- {msg['role_name']}{msg['content']}\n"
# 调用LLM
prompt = f"这是第{round_number}轮讨论,请根据之前的讨论内容,进一步阐述或补充你的观点。"
if request.user_message:
prompt += f"\n\n用户刚才说:{request.user_message}\n请也回应用户的观点。"
content = await call_role_llm(role_id, prompt, current_context)
message = {
"role_id": role_id,
"role_name": role["name"],
"nickname": role["nickname"],
"avatar": role["avatar"],
"color": role["color"],
"content": content,
"timestamp": datetime.now().isoformat(),
"round_number": round_number
}
messages.append(message)
# 本轮结束后,基金经理再次判断
all_discussion = history_context + "\n本轮讨论:\n" + "\n".join([
f"{msg['role_name']}】:{msg['content']}"
for msg in messages if msg["role_id"] != "user"
])
can_conclude, conclusion_content = await check_conclusion_ready(all_discussion, request.topic)
# 添加基金经理的发言
fund_manager = MEETING_ROLES["fund_manager"]
fund_manager_message = {
"role_id": "fund_manager",
"role_name": fund_manager["name"],
"nickname": fund_manager["nickname"],
"avatar": fund_manager["avatar"],
"color": fund_manager["color"],
"content": conclusion_content,
"timestamp": datetime.now().isoformat(),
"round_number": round_number,
"is_conclusion": can_conclude
}
messages.append(fund_manager_message)
return {
"success": True,
"session_id": session_id,
"messages": messages,
"round_number": round_number,
"is_concluded": can_conclude,
"conclusion": fund_manager_message if can_conclude else None
}
@app.get("/agent/meeting/roles")
async def get_meeting_roles():
"""获取所有会议角色配置"""
return {
"success": True,
"roles": [
{
"id": role["id"],
"name": role["name"],
"nickname": role["nickname"],
"role_type": role["role_type"],
"avatar": role["avatar"],
"color": role["color"],
"description": role["description"],
}
for role in MEETING_ROLES.values()
]
}
@app.post("/agent/meeting/stream")
async def stream_investment_meeting(request: MeetingRequest):
"""
流式投研会议
以 SSE 方式逐个角色流式返回发言
"""
logger.info(f"流式投研会议: {request.topic} (user: {request.user_id})")
async def generate_meeting_stream() -> AsyncGenerator[str, None]:
session_id = request.session_id or str(uuid.uuid4())
round_number = 1
all_messages = []
# 发送会话开始事件
yield f"data: {json.dumps({'type': 'session_start', 'session_id': session_id}, ensure_ascii=False)}\n\n"
# 决定发言顺序
speaking_order = await determine_speaking_order(request.topic)
yield f"data: {json.dumps({'type': 'order_decided', 'order': speaking_order}, ensure_ascii=False)}\n\n"
context = f"议题:{request.topic}\n\n这是第一轮讨论,请针对议题发表你的观点。"
# 依次让每个角色发言
for role_id in speaking_order:
role = MEETING_ROLES[role_id]
if role["role_type"] == "manager":
continue
# 发送"正在发言"状态
yield f"data: {json.dumps({'type': 'speaking_start', 'role_id': role_id, 'role_name': role['name']}, ensure_ascii=False)}\n\n"
# 构建上下文
prev_context = context
if all_messages:
prev_context += "\n\n其他人的观点:\n"
for msg in all_messages:
prev_context += f"- {msg['role_name']}{msg['content']}\n"
# 调用LLM生成发言
content = await call_role_llm(role_id, request.topic, prev_context)
message = {
"role_id": role_id,
"role_name": role["name"],
"nickname": role["nickname"],
"avatar": role["avatar"],
"color": role["color"],
"content": content,
"timestamp": datetime.now().isoformat(),
"round_number": round_number
}
all_messages.append(message)
# 发送完整发言
yield f"data: {json.dumps({'type': 'message', 'message': message}, ensure_ascii=False)}\n\n"
# 短暂延迟,让前端有时间处理
await asyncio.sleep(0.5)
# 基金经理总结
fund_manager = MEETING_ROLES["fund_manager"]
yield f"data: {json.dumps({'type': 'speaking_start', 'role_id': 'fund_manager', 'role_name': fund_manager['name']}, ensure_ascii=False)}\n\n"
discussion_summary = "\n".join([
f"{msg['role_name']}】:{msg['content']}"
for msg in all_messages
])
can_conclude, conclusion_content = await check_conclusion_ready(discussion_summary, request.topic)
fund_manager_message = {
"role_id": "fund_manager",
"role_name": fund_manager["name"],
"nickname": fund_manager["nickname"],
"avatar": fund_manager["avatar"],
"color": fund_manager["color"],
"content": conclusion_content,
"timestamp": datetime.now().isoformat(),
"round_number": round_number,
"is_conclusion": can_conclude
}
yield f"data: {json.dumps({'type': 'message', 'message': fund_manager_message}, ensure_ascii=False)}\n\n"
# 发送会议结束事件
yield f"data: {json.dumps({'type': 'meeting_end', 'is_concluded': can_conclude, 'round_number': round_number}, ensure_ascii=False)}\n\n"
return StreamingResponse(
generate_meeting_stream(),
media_type="text/event-stream",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no",
},
)
# ==================== 健康检查 ====================
@app.get("/health")