update pay ui

This commit is contained in:
2025-12-10 11:02:09 +08:00
parent d9daaeed19
commit e501ac3819
21 changed files with 5514 additions and 151 deletions

294
ml/backtest_v2.py Normal file
View File

@@ -0,0 +1,294 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
V2 回测脚本 - 验证时间片对齐 + 持续性确认的效果
回测指标:
1. 准确率:异动后 N 分钟内 alpha 是否继续上涨/下跌
2. 虚警率:多少异动是噪音
3. 持续性:平均异动持续时长
"""
import os
import sys
import json
import argparse
from datetime import datetime
from pathlib import Path
from typing import Dict, List, Tuple
from collections import defaultdict
import numpy as np
import pandas as pd
from tqdm import tqdm
from sqlalchemy import create_engine, text
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from ml.detector_v2 import AnomalyDetectorV2, CONFIG
# ==================== 配置 ====================
MYSQL_ENGINE = create_engine(
"mysql+pymysql://root:Zzl5588161!@192.168.1.5:3306/stock",
echo=False
)
# ==================== 回测评估 ====================
def evaluate_alerts(
alerts: List[Dict],
raw_data: pd.DataFrame,
lookahead_minutes: int = 10
) -> Dict:
"""
评估异动质量
指标:
1. 方向正确率:异动后 N 分钟 alpha 方向是否一致
2. 持续率:异动后 N 分钟内有多少时刻 alpha 保持同向
3. 峰值收益:异动后 N 分钟内的最大 alpha
"""
if not alerts:
return {'accuracy': 0, 'sustained_rate': 0, 'avg_peak': 0, 'total_alerts': 0}
results = []
for alert in alerts:
concept_id = alert['concept_id']
alert_time = alert['alert_time']
alert_alpha = alert['alpha']
is_up = alert_alpha > 0
# 获取该概念在异动后的数据
concept_data = raw_data[
(raw_data['concept_id'] == concept_id) &
(raw_data['timestamp'] > alert_time)
].head(lookahead_minutes)
if len(concept_data) < 3:
continue
future_alphas = concept_data['alpha'].values
# 方向正确:未来 alpha 平均值与当前同向
avg_future_alpha = np.mean(future_alphas)
direction_correct = (is_up and avg_future_alpha > 0) or (not is_up and avg_future_alpha < 0)
# 持续率:有多少时刻保持同向
if is_up:
sustained_count = sum(1 for a in future_alphas if a > 0)
else:
sustained_count = sum(1 for a in future_alphas if a < 0)
sustained_rate = sustained_count / len(future_alphas)
# 峰值收益
if is_up:
peak = max(future_alphas)
else:
peak = min(future_alphas)
results.append({
'direction_correct': direction_correct,
'sustained_rate': sustained_rate,
'peak': peak,
'alert_alpha': alert_alpha,
})
if not results:
return {'accuracy': 0, 'sustained_rate': 0, 'avg_peak': 0, 'total_alerts': 0}
return {
'accuracy': np.mean([r['direction_correct'] for r in results]),
'sustained_rate': np.mean([r['sustained_rate'] for r in results]),
'avg_peak': np.mean([abs(r['peak']) for r in results]),
'total_alerts': len(alerts),
'evaluated_alerts': len(results),
}
def save_alerts_to_mysql(alerts: List[Dict], dry_run: bool = False) -> int:
"""保存异动到 MySQL"""
if not alerts or dry_run:
return 0
# 确保表存在
with MYSQL_ENGINE.begin() as conn:
conn.execute(text("""
CREATE TABLE IF NOT EXISTS concept_anomaly_v2 (
id INT AUTO_INCREMENT PRIMARY KEY,
concept_id VARCHAR(64) NOT NULL,
alert_time DATETIME NOT NULL,
trade_date DATE NOT NULL,
alert_type VARCHAR(32) NOT NULL,
final_score FLOAT NOT NULL,
rule_score FLOAT NOT NULL,
ml_score FLOAT NOT NULL,
trigger_reason VARCHAR(128),
confirm_ratio FLOAT,
alpha FLOAT,
alpha_zscore FLOAT,
amt_zscore FLOAT,
rank_zscore FLOAT,
momentum_3m FLOAT,
momentum_5m FLOAT,
limit_up_ratio FLOAT,
triggered_rules JSON,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
UNIQUE KEY uk_concept_time (concept_id, alert_time, trade_date),
INDEX idx_trade_date (trade_date),
INDEX idx_final_score (final_score)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='概念异动 V2时间片对齐+持续确认)'
"""))
# 插入数据
saved = 0
with MYSQL_ENGINE.begin() as conn:
for alert in alerts:
try:
conn.execute(text("""
INSERT IGNORE INTO concept_anomaly_v2
(concept_id, alert_time, trade_date, alert_type,
final_score, rule_score, ml_score, trigger_reason, confirm_ratio,
alpha, alpha_zscore, amt_zscore, rank_zscore,
momentum_3m, momentum_5m, limit_up_ratio, triggered_rules)
VALUES
(:concept_id, :alert_time, :trade_date, :alert_type,
:final_score, :rule_score, :ml_score, :trigger_reason, :confirm_ratio,
:alpha, :alpha_zscore, :amt_zscore, :rank_zscore,
:momentum_3m, :momentum_5m, :limit_up_ratio, :triggered_rules)
"""), {
'concept_id': alert['concept_id'],
'alert_time': alert['alert_time'],
'trade_date': alert['trade_date'],
'alert_type': alert['alert_type'],
'final_score': alert['final_score'],
'rule_score': alert['rule_score'],
'ml_score': alert['ml_score'],
'trigger_reason': alert['trigger_reason'],
'confirm_ratio': alert.get('confirm_ratio', 0),
'alpha': alert['alpha'],
'alpha_zscore': alert.get('alpha_zscore', 0),
'amt_zscore': alert.get('amt_zscore', 0),
'rank_zscore': alert.get('rank_zscore', 0),
'momentum_3m': alert.get('momentum_3m', 0),
'momentum_5m': alert.get('momentum_5m', 0),
'limit_up_ratio': alert.get('limit_up_ratio', 0),
'triggered_rules': json.dumps(alert.get('triggered_rules', [])),
})
saved += 1
except Exception as e:
print(f"保存失败: {e}")
return saved
# ==================== 主函数 ====================
def main():
parser = argparse.ArgumentParser(description='V2 回测')
parser.add_argument('--start', type=str, required=True, help='开始日期')
parser.add_argument('--end', type=str, default=None, help='结束日期')
parser.add_argument('--model_dir', type=str, default='ml/checkpoints_v2')
parser.add_argument('--baseline_dir', type=str, default='ml/data_v2/baselines')
parser.add_argument('--save', action='store_true', help='保存到数据库')
parser.add_argument('--lookahead', type=int, default=10, help='评估前瞻时间(分钟)')
args = parser.parse_args()
end_date = args.end or args.start
print("=" * 60)
print("V2 回测 - 时间片对齐 + 持续性确认")
print("=" * 60)
print(f"日期范围: {args.start} ~ {end_date}")
print(f"模型目录: {args.model_dir}")
print(f"评估前瞻: {args.lookahead} 分钟")
# 初始化检测器
detector = AnomalyDetectorV2(
model_dir=args.model_dir,
baseline_dir=args.baseline_dir
)
# 获取交易日
from prepare_data_v2 import get_trading_days
trading_days = get_trading_days(args.start, end_date)
if not trading_days:
print("无交易日")
return
print(f"交易日数: {len(trading_days)}")
# 回测统计
total_stats = {
'total_alerts': 0,
'accuracy_sum': 0,
'sustained_sum': 0,
'peak_sum': 0,
'day_count': 0,
}
all_alerts = []
for trade_date in tqdm(trading_days, desc="回测进度"):
# 检测异动
alerts = detector.detect(trade_date)
if not alerts:
continue
all_alerts.extend(alerts)
# 评估
raw_data = detector._compute_raw_features(trade_date)
if raw_data.empty:
continue
stats = evaluate_alerts(alerts, raw_data, args.lookahead)
if stats['evaluated_alerts'] > 0:
total_stats['total_alerts'] += stats['total_alerts']
total_stats['accuracy_sum'] += stats['accuracy'] * stats['evaluated_alerts']
total_stats['sustained_sum'] += stats['sustained_rate'] * stats['evaluated_alerts']
total_stats['peak_sum'] += stats['avg_peak'] * stats['evaluated_alerts']
total_stats['day_count'] += 1
print(f"\n[{trade_date}] 异动: {stats['total_alerts']}, "
f"准确率: {stats['accuracy']:.1%}, "
f"持续率: {stats['sustained_rate']:.1%}, "
f"峰值: {stats['avg_peak']:.2f}%")
# 汇总
print("\n" + "=" * 60)
print("回测汇总")
print("=" * 60)
if total_stats['total_alerts'] > 0:
avg_accuracy = total_stats['accuracy_sum'] / total_stats['total_alerts']
avg_sustained = total_stats['sustained_sum'] / total_stats['total_alerts']
avg_peak = total_stats['peak_sum'] / total_stats['total_alerts']
print(f"总异动数: {total_stats['total_alerts']}")
print(f"回测天数: {total_stats['day_count']}")
print(f"平均每天: {total_stats['total_alerts'] / max(1, total_stats['day_count']):.1f}")
print(f"方向准确率: {avg_accuracy:.1%}")
print(f"持续率: {avg_sustained:.1%}")
print(f"平均峰值: {avg_peak:.2f}%")
else:
print("无异动检测结果")
# 保存
if args.save and all_alerts:
print(f"\n保存 {len(all_alerts)} 条异动到数据库...")
saved = save_alerts_to_mysql(all_alerts)
print(f"保存完成: {saved}")
print("=" * 60)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,31 @@
{
"seq_len": 10,
"stride": 2,
"train_end_date": "2025-06-30",
"val_end_date": "2025-09-30",
"features": [
"alpha_zscore",
"amt_zscore",
"rank_zscore",
"momentum_3m",
"momentum_5m",
"limit_up_ratio"
],
"batch_size": 32768,
"epochs": 150,
"learning_rate": 0.0006,
"weight_decay": 1e-05,
"gradient_clip": 1.0,
"patience": 15,
"min_delta": 1e-06,
"model": {
"n_features": 6,
"hidden_dim": 32,
"latent_dim": 4,
"num_layers": 1,
"dropout": 0.2,
"bidirectional": true
},
"clip_value": 5.0,
"threshold_percentiles": [90, 95, 99]
}

View File

@@ -0,0 +1,8 @@
{
"p90": 0.15,
"p95": 0.25,
"p99": 0.50,
"mean": 0.08,
"std": 0.12,
"median": 0.06
}

716
ml/detector_v2.py Normal file
View File

@@ -0,0 +1,716 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
异动检测器 V2 - 基于时间片对齐 + 持续性确认
核心改进:
1. Z-Score 特征:相对于同时间片历史的偏离
2. 短序列 LSTM10分钟序列开盘即可用
3. 持续性确认5分钟窗口内60%时刻超标才确认为异动
检测流程:
1. 计算当前时刻的 Z-Score对比同时间片历史基线
2. 构建最近10分钟的 Z-Score 序列
3. LSTM 计算重构误差ML分数
4. 规则评分(基于 Z-Score 的规则)
5. 滑动窗口确认最近5分钟内是否有足够多的时刻超标
6. 只有通过持续性确认的才输出为异动
"""
import os
import sys
import json
import pickle
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Tuple
from collections import defaultdict, deque
import numpy as np
import pandas as pd
import torch
from sqlalchemy import create_engine, text
from elasticsearch import Elasticsearch
from clickhouse_driver import Client
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from ml.model import TransformerAutoencoder
# ==================== 配置 ====================
MYSQL_ENGINE = create_engine(
"mysql+pymysql://root:Zzl5588161!@192.168.1.5:3306/stock",
echo=False
)
ES_CLIENT = Elasticsearch(['http://127.0.0.1:9200'])
ES_INDEX = 'concept_library_v3'
CLICKHOUSE_CONFIG = {
'host': '127.0.0.1',
'port': 9000,
'user': 'default',
'password': 'Zzl33818!',
'database': 'stock'
}
REFERENCE_INDEX = '000001.SH'
# 检测配置
CONFIG = {
# 序列配置
'seq_len': 10, # LSTM 序列长度(分钟)
# 持续性确认配置(核心!)
'confirm_window': 5, # 确认窗口(分钟)
'confirm_ratio': 0.6, # 确认比例60%时刻需要超标)
# Z-Score 阈值
'alpha_zscore_threshold': 2.0, # Alpha Z-Score 阈值
'amt_zscore_threshold': 2.5, # 成交额 Z-Score 阈值
# 融合权重
'rule_weight': 0.5,
'ml_weight': 0.5,
# 触发阈值
'rule_trigger': 60,
'ml_trigger': 70,
'fusion_trigger': 50,
# 冷却期
'cooldown_minutes': 10,
'max_alerts_per_minute': 15,
# Z-Score 截断
'zscore_clip': 5.0,
}
# V2 特征列表
FEATURES_V2 = [
'alpha_zscore', 'amt_zscore', 'rank_zscore',
'momentum_3m', 'momentum_5m', 'limit_up_ratio'
]
# ==================== 工具函数 ====================
def get_ch_client():
return Client(**CLICKHOUSE_CONFIG)
def code_to_ch_format(code: str) -> str:
if not code or len(code) != 6 or not code.isdigit():
return None
if code.startswith('6'):
return f"{code}.SH"
elif code.startswith('0') or code.startswith('3'):
return f"{code}.SZ"
else:
return f"{code}.BJ"
def time_to_slot(ts) -> str:
"""时间戳转时间片HH:MM"""
if isinstance(ts, str):
return ts
return ts.strftime('%H:%M')
# ==================== 基线加载 ====================
def load_baselines(baseline_dir: str = 'ml/data_v2/baselines') -> Dict[str, pd.DataFrame]:
"""加载时间片基线"""
baseline_file = os.path.join(baseline_dir, 'baselines.pkl')
if os.path.exists(baseline_file):
with open(baseline_file, 'rb') as f:
return pickle.load(f)
return {}
# ==================== 规则评分(基于 Z-Score====================
def score_rules_zscore(row: Dict) -> Tuple[float, List[str]]:
"""
基于 Z-Score 的规则评分
设计思路Z-Score 已经标准化,直接用阈值判断
"""
score = 0.0
triggered = []
alpha_zscore = row.get('alpha_zscore', 0)
amt_zscore = row.get('amt_zscore', 0)
rank_zscore = row.get('rank_zscore', 0)
momentum_3m = row.get('momentum_3m', 0)
momentum_5m = row.get('momentum_5m', 0)
limit_up_ratio = row.get('limit_up_ratio', 0)
alpha_zscore_abs = abs(alpha_zscore)
amt_zscore_abs = abs(amt_zscore)
# ========== Alpha Z-Score 规则 ==========
if alpha_zscore_abs >= 4.0:
score += 25
triggered.append('alpha_zscore_extreme')
elif alpha_zscore_abs >= 3.0:
score += 18
triggered.append('alpha_zscore_strong')
elif alpha_zscore_abs >= 2.0:
score += 10
triggered.append('alpha_zscore_moderate')
# ========== 成交额 Z-Score 规则 ==========
if amt_zscore >= 4.0:
score += 20
triggered.append('amt_zscore_extreme')
elif amt_zscore >= 3.0:
score += 12
triggered.append('amt_zscore_strong')
elif amt_zscore >= 2.0:
score += 6
triggered.append('amt_zscore_moderate')
# ========== 排名 Z-Score 规则 ==========
if abs(rank_zscore) >= 3.0:
score += 15
triggered.append('rank_zscore_extreme')
elif abs(rank_zscore) >= 2.0:
score += 8
triggered.append('rank_zscore_strong')
# ========== 动量规则 ==========
if momentum_3m >= 1.0:
score += 12
triggered.append('momentum_3m_strong')
elif momentum_3m >= 0.5:
score += 6
triggered.append('momentum_3m_moderate')
if momentum_5m >= 1.5:
score += 10
triggered.append('momentum_5m_strong')
# ========== 涨停比例规则 ==========
if limit_up_ratio >= 0.3:
score += 20
triggered.append('limit_up_extreme')
elif limit_up_ratio >= 0.15:
score += 12
triggered.append('limit_up_strong')
elif limit_up_ratio >= 0.08:
score += 5
triggered.append('limit_up_moderate')
# ========== 组合规则 ==========
# Alpha Z-Score + 成交额放大
if alpha_zscore_abs >= 2.0 and amt_zscore >= 2.0:
score += 15
triggered.append('combo_alpha_amt')
# Alpha Z-Score + 涨停
if alpha_zscore_abs >= 2.0 and limit_up_ratio >= 0.1:
score += 12
triggered.append('combo_alpha_limitup')
return min(score, 100), triggered
# ==================== ML 评分器 ====================
class MLScorerV2:
"""V2 ML 评分器"""
def __init__(self, model_dir: str = 'ml/checkpoints_v2'):
self.model_dir = model_dir
self.model = None
self.thresholds = None
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self._load_model()
def _load_model(self):
"""加载模型和阈值"""
model_path = os.path.join(self.model_dir, 'best_model.pt')
threshold_path = os.path.join(self.model_dir, 'thresholds.json')
config_path = os.path.join(self.model_dir, 'config.json')
if not os.path.exists(model_path):
print(f"警告: 模型文件不存在: {model_path}")
return
# 加载配置
with open(config_path, 'r') as f:
config = json.load(f)
# 创建模型
model_config = config.get('model', {})
self.model = TransformerAutoencoder(**model_config)
# 加载权重
checkpoint = torch.load(model_path, map_location=self.device)
self.model.load_state_dict(checkpoint['model_state_dict'])
self.model.to(self.device)
self.model.eval()
# 加载阈值
if os.path.exists(threshold_path):
with open(threshold_path, 'r') as f:
self.thresholds = json.load(f)
print(f"V2 模型加载完成: {model_path}")
@torch.no_grad()
def score_batch(self, sequences: np.ndarray) -> np.ndarray:
"""
批量计算 ML 分数
返回 0-100 的分数,越高越异常
"""
if self.model is None:
return np.zeros(len(sequences))
# 转换为 tensor
x = torch.FloatTensor(sequences).to(self.device)
# 计算重构误差
errors = self.model.compute_reconstruction_error(x, reduction='none')
# 取最后一个时刻的误差
last_errors = errors[:, -1].cpu().numpy()
# 转换为 0-100 分数
if self.thresholds:
p50 = self.thresholds.get('median', 0.1)
p99 = self.thresholds.get('p99', 1.0)
# 线性映射p50 -> 50分p99 -> 99分
scores = 50 + (last_errors - p50) / (p99 - p50) * 49
scores = np.clip(scores, 0, 100)
else:
# 没有阈值时,简单归一化
scores = last_errors * 100
scores = np.clip(scores, 0, 100)
return scores
# ==================== 实时数据管理器 ====================
class RealtimeDataManagerV2:
"""
V2 实时数据管理器
维护:
1. 每个概念的历史 Z-Score 序列(用于 LSTM 输入)
2. 每个概念的异动候选队列(用于持续性确认)
"""
def __init__(self, concepts: List[dict], baselines: Dict[str, pd.DataFrame]):
self.concepts = {c['concept_id']: c for c in concepts}
self.baselines = baselines
# 概念到股票的映射
self.concept_stocks = {c['concept_id']: set(c['stocks']) for c in concepts}
# 历史 Z-Score 序列(每个概念)
# {concept_id: deque([(timestamp, features_dict), ...], maxlen=seq_len)}
self.zscore_history = defaultdict(lambda: deque(maxlen=CONFIG['seq_len']))
# 异动候选队列(用于持续性确认)
# {concept_id: deque([(timestamp, score), ...], maxlen=confirm_window)}
self.anomaly_candidates = defaultdict(lambda: deque(maxlen=CONFIG['confirm_window']))
# 冷却期记录
self.cooldown = {}
# 上一次更新的时间戳
self.last_timestamp = None
def compute_zscore_features(
self,
concept_id: str,
timestamp,
alpha: float,
total_amt: float,
rank_pct: float,
limit_up_ratio: float
) -> Optional[Dict]:
"""计算单个概念单个时刻的 Z-Score 特征"""
if concept_id not in self.baselines:
return None
baseline = self.baselines[concept_id]
time_slot = time_to_slot(timestamp)
# 查找对应时间片的基线
bl_row = baseline[baseline['time_slot'] == time_slot]
if bl_row.empty:
return None
bl = bl_row.iloc[0]
# 检查样本量
if bl.get('sample_count', 0) < 10:
return None
# 计算 Z-Score
alpha_zscore = (alpha - bl['alpha_mean']) / bl['alpha_std']
amt_zscore = (total_amt - bl['amt_mean']) / bl['amt_std']
rank_zscore = (rank_pct - bl['rank_mean']) / bl['rank_std']
# 截断
clip = CONFIG['zscore_clip']
alpha_zscore = np.clip(alpha_zscore, -clip, clip)
amt_zscore = np.clip(amt_zscore, -clip, clip)
rank_zscore = np.clip(rank_zscore, -clip, clip)
# 计算动量(需要历史)
history = self.zscore_history[concept_id]
momentum_3m = 0
momentum_5m = 0
if len(history) >= 3:
recent_alphas = [h[1]['alpha'] for h in list(history)[-3:]]
older_alphas = [h[1]['alpha'] for h in list(history)[-6:-3]] if len(history) >= 6 else [alpha]
momentum_3m = np.mean(recent_alphas) - np.mean(older_alphas)
if len(history) >= 5:
recent_alphas = [h[1]['alpha'] for h in list(history)[-5:]]
older_alphas = [h[1]['alpha'] for h in list(history)[-10:-5]] if len(history) >= 10 else [alpha]
momentum_5m = np.mean(recent_alphas) - np.mean(older_alphas)
return {
'alpha': alpha,
'alpha_zscore': alpha_zscore,
'amt_zscore': amt_zscore,
'rank_zscore': rank_zscore,
'momentum_3m': momentum_3m,
'momentum_5m': momentum_5m,
'limit_up_ratio': limit_up_ratio,
'total_amt': total_amt,
'rank_pct': rank_pct,
}
def update(self, concept_id: str, timestamp, features: Dict):
"""更新概念的历史数据"""
self.zscore_history[concept_id].append((timestamp, features))
def get_sequence(self, concept_id: str) -> Optional[np.ndarray]:
"""获取用于 LSTM 的序列"""
history = self.zscore_history[concept_id]
if len(history) < CONFIG['seq_len']:
return None
# 提取特征
feature_list = []
for _, features in history:
feature_list.append([
features['alpha_zscore'],
features['amt_zscore'],
features['rank_zscore'],
features['momentum_3m'],
features['momentum_5m'],
features['limit_up_ratio'],
])
return np.array(feature_list)
def add_anomaly_candidate(self, concept_id: str, timestamp, score: float):
"""添加异动候选"""
self.anomaly_candidates[concept_id].append((timestamp, score))
def check_sustained_anomaly(self, concept_id: str, threshold: float) -> Tuple[bool, float]:
"""
检查是否为持续性异动
返回:(是否确认, 确认比例)
"""
candidates = self.anomaly_candidates[concept_id]
if len(candidates) < CONFIG['confirm_window']:
return False, 0.0
# 统计超过阈值的时刻数量
exceed_count = sum(1 for _, score in candidates if score >= threshold)
ratio = exceed_count / len(candidates)
return ratio >= CONFIG['confirm_ratio'], ratio
def check_cooldown(self, concept_id: str, timestamp) -> bool:
"""检查是否在冷却期"""
if concept_id not in self.cooldown:
return False
last_alert = self.cooldown[concept_id]
try:
diff = (timestamp - last_alert).total_seconds() / 60
return diff < CONFIG['cooldown_minutes']
except:
return False
def set_cooldown(self, concept_id: str, timestamp):
"""设置冷却期"""
self.cooldown[concept_id] = timestamp
# ==================== 异动检测器 V2 ====================
class AnomalyDetectorV2:
"""
V2 异动检测器
核心流程:
1. 获取实时数据
2. 计算 Z-Score 特征
3. 规则评分 + ML 评分
4. 持续性确认
5. 输出异动
"""
def __init__(
self,
model_dir: str = 'ml/checkpoints_v2',
baseline_dir: str = 'ml/data_v2/baselines'
):
# 加载概念
self.concepts = self._load_concepts()
# 加载基线
self.baselines = load_baselines(baseline_dir)
print(f"加载了 {len(self.baselines)} 个概念的基线")
# 初始化 ML 评分器
self.ml_scorer = MLScorerV2(model_dir)
# 初始化数据管理器
self.data_manager = RealtimeDataManagerV2(self.concepts, self.baselines)
# 收集所有股票
self.all_stocks = list(set(s for c in self.concepts for s in c['stocks']))
def _load_concepts(self) -> List[dict]:
"""从 ES 加载概念"""
concepts = []
query = {"query": {"match_all": {}}, "size": 100, "_source": ["concept_id", "concept", "stocks"]}
resp = ES_CLIENT.search(index=ES_INDEX, body=query, scroll='2m')
scroll_id = resp['_scroll_id']
hits = resp['hits']['hits']
while len(hits) > 0:
for hit in hits:
source = hit['_source']
stocks = []
if 'stocks' in source and isinstance(source['stocks'], list):
for stock in source['stocks']:
if isinstance(stock, dict) and 'code' in stock and stock['code']:
stocks.append(stock['code'])
if stocks:
concepts.append({
'concept_id': source.get('concept_id'),
'concept_name': source.get('concept'),
'stocks': stocks
})
resp = ES_CLIENT.scroll(scroll_id=scroll_id, scroll='2m')
scroll_id = resp['_scroll_id']
hits = resp['hits']['hits']
ES_CLIENT.clear_scroll(scroll_id=scroll_id)
print(f"加载了 {len(concepts)} 个概念")
return concepts
def detect(self, trade_date: str) -> List[Dict]:
"""
检测指定日期的异动
返回异动列表
"""
print(f"\n检测 {trade_date} 的异动...")
# 获取原始数据
raw_features = self._compute_raw_features(trade_date)
if raw_features.empty:
print("无数据")
return []
# 按时间排序
timestamps = sorted(raw_features['timestamp'].unique())
print(f"时间点数: {len(timestamps)}")
all_alerts = []
for ts in timestamps:
ts_data = raw_features[raw_features['timestamp'] == ts]
ts_alerts = self._process_timestamp(ts, ts_data, trade_date)
all_alerts.extend(ts_alerts)
print(f"共检测到 {len(all_alerts)} 个异动")
return all_alerts
def _compute_raw_features(self, trade_date: str) -> pd.DataFrame:
"""计算原始特征(同 prepare_data_v2"""
# 这里简化处理,直接调用数据准备逻辑
from prepare_data_v2 import compute_raw_concept_features
return compute_raw_concept_features(trade_date, self.concepts, self.all_stocks)
def _process_timestamp(self, timestamp, ts_data: pd.DataFrame, trade_date: str) -> List[Dict]:
"""处理单个时间戳"""
alerts = []
candidates = [] # (concept_id, features, rule_score, triggered_rules)
for _, row in ts_data.iterrows():
concept_id = row['concept_id']
# 计算 Z-Score 特征
features = self.data_manager.compute_zscore_features(
concept_id, timestamp,
row['alpha'], row['total_amt'], row['rank_pct'], row['limit_up_ratio']
)
if features is None:
continue
# 更新历史
self.data_manager.update(concept_id, timestamp, features)
# 规则评分
rule_score, triggered_rules = score_rules_zscore(features)
# 收集候选
candidates.append((concept_id, features, rule_score, triggered_rules))
if not candidates:
return []
# 批量 ML 评分
sequences = []
valid_candidates = []
for concept_id, features, rule_score, triggered_rules in candidates:
seq = self.data_manager.get_sequence(concept_id)
if seq is not None:
sequences.append(seq)
valid_candidates.append((concept_id, features, rule_score, triggered_rules))
if not sequences:
return []
sequences = np.array(sequences)
ml_scores = self.ml_scorer.score_batch(sequences)
# 融合评分 + 持续性确认
for i, (concept_id, features, rule_score, triggered_rules) in enumerate(valid_candidates):
ml_score = ml_scores[i]
final_score = CONFIG['rule_weight'] * rule_score + CONFIG['ml_weight'] * ml_score
# 判断是否触发
is_triggered = (
rule_score >= CONFIG['rule_trigger'] or
ml_score >= CONFIG['ml_trigger'] or
final_score >= CONFIG['fusion_trigger']
)
# 添加到候选队列
self.data_manager.add_anomaly_candidate(concept_id, timestamp, final_score)
if not is_triggered:
continue
# 检查冷却期
if self.data_manager.check_cooldown(concept_id, timestamp):
continue
# 持续性确认
is_sustained, confirm_ratio = self.data_manager.check_sustained_anomaly(
concept_id, CONFIG['fusion_trigger']
)
if not is_sustained:
continue
# 确认为异动!
self.data_manager.set_cooldown(concept_id, timestamp)
# 确定异动类型
alpha = features['alpha']
if alpha >= 1.5:
alert_type = 'surge_up'
elif alpha <= -1.5:
alert_type = 'surge_down'
elif features['amt_zscore'] >= 3.0:
alert_type = 'volume_spike'
else:
alert_type = 'surge'
# 确定触发原因
if rule_score >= CONFIG['rule_trigger']:
trigger_reason = f'规则({rule_score:.0f})+持续确认({confirm_ratio:.0%})'
elif ml_score >= CONFIG['ml_trigger']:
trigger_reason = f'ML({ml_score:.0f})+持续确认({confirm_ratio:.0%})'
else:
trigger_reason = f'融合({final_score:.0f})+持续确认({confirm_ratio:.0%})'
alerts.append({
'concept_id': concept_id,
'concept_name': self.data_manager.concepts.get(concept_id, {}).get('concept_name', concept_id),
'alert_time': timestamp,
'trade_date': trade_date,
'alert_type': alert_type,
'final_score': final_score,
'rule_score': rule_score,
'ml_score': ml_score,
'trigger_reason': trigger_reason,
'confirm_ratio': confirm_ratio,
'alpha': alpha,
'alpha_zscore': features['alpha_zscore'],
'amt_zscore': features['amt_zscore'],
'rank_zscore': features['rank_zscore'],
'momentum_3m': features['momentum_3m'],
'momentum_5m': features['momentum_5m'],
'limit_up_ratio': features['limit_up_ratio'],
'triggered_rules': triggered_rules,
})
# 每分钟最多 N 个
if len(alerts) > CONFIG['max_alerts_per_minute']:
alerts = sorted(alerts, key=lambda x: x['final_score'], reverse=True)
alerts = alerts[:CONFIG['max_alerts_per_minute']]
return alerts
# ==================== 主函数 ====================
def main():
import argparse
parser = argparse.ArgumentParser(description='V2 异动检测器')
parser.add_argument('--date', type=str, default=None, help='检测日期(默认今天)')
parser.add_argument('--model_dir', type=str, default='ml/checkpoints_v2')
parser.add_argument('--baseline_dir', type=str, default='ml/data_v2/baselines')
args = parser.parse_args()
trade_date = args.date or datetime.now().strftime('%Y-%m-%d')
detector = AnomalyDetectorV2(
model_dir=args.model_dir,
baseline_dir=args.baseline_dir
)
alerts = detector.detect(trade_date)
print(f"\n检测结果:")
for alert in alerts[:20]:
print(f" [{alert['alert_time'].strftime('%H:%M') if hasattr(alert['alert_time'], 'strftime') else alert['alert_time']}] "
f"{alert['concept_name']} ({alert['alert_type']}) "
f"分数={alert['final_score']:.0f} "
f"确认率={alert['confirm_ratio']:.0%}")
if len(alerts) > 20:
print(f" ... 共 {len(alerts)} 个异动")
if __name__ == "__main__":
main()

View File

@@ -85,9 +85,12 @@ class LSTMAutoencoder(nn.Module):
nn.Tanh(), # 限制范围,增加约束
)
# 使用 LeakyReLU 替代 ReLU
# 原因Z-Score 数据范围是 [-5, +5]ReLU 会截断负值,丢失跌幅信息
# LeakyReLU 保留负值信号(乘以 0.1
self.bottleneck_up = nn.Sequential(
nn.Linear(latent_dim, hidden_dim),
nn.ReLU(),
nn.LeakyReLU(negative_slope=0.1),
)
# Decoder: 单向 LSTM

View File

@@ -26,7 +26,9 @@ import hashlib
import json
import logging
from typing import Dict, List, Set, Tuple
from concurrent.futures import ThreadPoolExecutor, as_completed
from concurrent.futures import ProcessPoolExecutor, as_completed
from multiprocessing import Manager
import multiprocessing
import warnings
warnings.filterwarnings('ignore')
@@ -128,7 +130,7 @@ def get_all_concepts() -> List[dict]:
hits = resp['hits']['hits']
ES_CLIENT.clear_scroll(scroll_id=scroll_id)
logger.info(f"获取到 {len(concepts)} 个概念")
print(f"获取到 {len(concepts)} 个概念")
return concepts
@@ -148,7 +150,7 @@ def get_trading_days(start_date: str, end_date: str) -> List[str]:
result = client.execute(query)
days = [row[0].strftime('%Y-%m-%d') for row in result]
logger.info(f"找到 {len(days)} 个交易日: {days[0]} ~ {days[-1]}")
print(f"找到 {len(days)} 个交易日: {days[0]} ~ {days[-1]}")
return days
@@ -223,21 +225,23 @@ def get_daily_index_data(trade_date: str, index_code: str = REFERENCE_INDEX) ->
def get_prev_close(stock_codes: List[str], trade_date: str) -> Dict[str, float]:
"""获取昨收价"""
"""获取昨收价(上一交易日的收盘价 F007N"""
valid_codes = [c for c in stock_codes if c and len(c) == 6 and c.isdigit()]
if not valid_codes:
return {}
codes_str = "','".join(valid_codes)
# 注意F007N 是"最近成交价"即当日收盘价F002N 是"昨日收盘价"
# 我们需要查上一交易日的 F007N那天的收盘价作为今天的昨收
query = f"""
SELECT SECCODE, F002N
SELECT SECCODE, F007N
FROM ea_trade
WHERE SECCODE IN ('{codes_str}')
AND TRADEDATE = (
SELECT MAX(TRADEDATE) FROM ea_trade WHERE TRADEDATE < '{trade_date}'
)
AND F002N IS NOT NULL AND F002N > 0
AND F007N IS NOT NULL AND F007N > 0
"""
try:
@@ -245,7 +249,7 @@ def get_prev_close(stock_codes: List[str], trade_date: str) -> Dict[str, float]:
result = conn.execute(text(query))
return {row[0]: float(row[1]) for row in result if row[1]}
except Exception as e:
logger.error(f"获取昨收价失败: {e}")
print(f"获取昨收价失败: {e}")
return {}
@@ -264,7 +268,7 @@ def get_index_prev_close(trade_date: str, index_code: str = REFERENCE_INDEX) ->
if result and result[0]:
return float(result[0])
except Exception as e:
logger.error(f"获取指数昨收失败: {e}")
print(f"获取指数昨收失败: {e}")
return None
@@ -285,25 +289,19 @@ def compute_daily_features(
"""
# 1. 获取数据
logger.info(f" 获取股票数据...")
stock_df = get_daily_stock_data(trade_date, all_stocks)
if stock_df.empty:
logger.warning(f" 无股票数据")
return pd.DataFrame()
logger.info(f" 获取指数数据...")
index_df = get_daily_index_data(trade_date)
if index_df.empty:
logger.warning(f" 无指数数据")
return pd.DataFrame()
# 2. 获取昨收价
logger.info(f" 获取昨收价...")
prev_close = get_prev_close(all_stocks, trade_date)
index_prev_close = get_index_prev_close(trade_date)
if not prev_close or not index_prev_close:
logger.warning(f" 无昨收价数据")
return pd.DataFrame()
# 3. 计算股票涨跌幅和成交额
@@ -317,7 +315,6 @@ def compute_daily_features(
# 5. 获取所有时间点
timestamps = sorted(stock_df['timestamp'].unique())
logger.info(f" 时间点数: {len(timestamps)}")
# 6. 按时间点计算概念特征
results = []
@@ -414,87 +411,126 @@ def compute_daily_features(
if amt_delta_std > 0:
final_df['amt_delta'] = final_df['amt_delta'] / amt_delta_std
logger.info(f" 计算完成: {len(final_df)} 条记录")
return final_df
# ==================== 主流程 ====================
def process_single_day(trade_date: str, concepts: List[dict], all_stocks: List[str]) -> str:
"""处理单个交易日"""
def process_single_day(args) -> Tuple[str, bool]:
"""
处理单个交易日(多进程版本)
Args:
args: (trade_date, concepts, all_stocks) 元组
Returns:
(trade_date, success) 元组
"""
trade_date, concepts, all_stocks = args
output_file = os.path.join(OUTPUT_DIR, f'features_{trade_date}.parquet')
# 检查是否已处理
if os.path.exists(output_file):
logger.info(f"[{trade_date}] 已存在,跳过")
return output_file
print(f"[{trade_date}] 已存在,跳过")
return (trade_date, True)
logger.info(f"[{trade_date}] 开始处理...")
print(f"[{trade_date}] 开始处理...")
try:
df = compute_daily_features(trade_date, concepts, all_stocks)
if df.empty:
logger.warning(f"[{trade_date}] 无数据")
return None
print(f"[{trade_date}] 无数据")
return (trade_date, False)
# 保存
df.to_parquet(output_file, index=False)
logger.info(f"[{trade_date}] 保存完成: {output_file}")
return output_file
print(f"[{trade_date}] 保存完成")
return (trade_date, True)
except Exception as e:
logger.error(f"[{trade_date}] 处理失败: {e}")
print(f"[{trade_date}] 处理失败: {e}")
import traceback
traceback.print_exc()
return None
return (trade_date, False)
def main():
import argparse
from tqdm import tqdm
parser = argparse.ArgumentParser(description='准备训练数据')
parser.add_argument('--start', type=str, default='2022-01-01', help='开始日期')
parser.add_argument('--end', type=str, default=None, help='结束日期(默认今天)')
parser.add_argument('--workers', type=int, default=1, help='并行建议1避免数据库压力')
parser.add_argument('--workers', type=int, default=18, help='并行进程数默认18')
parser.add_argument('--force', action='store_true', help='强制重新处理已存在的文件')
args = parser.parse_args()
end_date = args.end or datetime.now().strftime('%Y-%m-%d')
logger.info("=" * 60)
logger.info("数据准备 - Transformer Autoencoder 训练数据")
logger.info("=" * 60)
logger.info(f"日期范围: {args.start} ~ {end_date}")
print("=" * 60)
print("数据准备 - Transformer Autoencoder 训练数据")
print("=" * 60)
print(f"日期范围: {args.start} ~ {end_date}")
print(f"并行进程数: {args.workers}")
# 1. 获取概念列表
concepts = get_all_concepts()
# 收集所有股票
all_stocks = list(set(s for c in concepts for s in c['stocks']))
logger.info(f"股票总数: {len(all_stocks)}")
print(f"股票总数: {len(all_stocks)}")
# 2. 获取交易日列表
trading_days = get_trading_days(args.start, end_date)
if not trading_days:
logger.error("无交易日数据")
print("无交易日数据")
return
# 3. 处理每个交易日
logger.info(f"\n开始处理 {len(trading_days)} 个交易日...")
# 如果强制模式,删除已有文件
if args.force:
for trade_date in trading_days:
output_file = os.path.join(OUTPUT_DIR, f'features_{trade_date}.parquet')
if os.path.exists(output_file):
os.remove(output_file)
print(f"删除已有文件: {output_file}")
# 3. 准备任务参数
tasks = [(trade_date, concepts, all_stocks) for trade_date in trading_days]
print(f"\n开始处理 {len(trading_days)} 个交易日({args.workers} 进程并行)...")
# 4. 多进程处理
success_count = 0
for i, trade_date in enumerate(trading_days):
logger.info(f"\n[{i+1}/{len(trading_days)}] {trade_date}")
result = process_single_day(trade_date, concepts, all_stocks)
if result:
success_count += 1
failed_dates = []
logger.info("\n" + "=" * 60)
logger.info(f"处理完成: {success_count}/{len(trading_days)} 个交易日")
logger.info(f"数据保存在: {OUTPUT_DIR}")
logger.info("=" * 60)
with ProcessPoolExecutor(max_workers=args.workers) as executor:
# 提交所有任务
futures = {executor.submit(process_single_day, task): task[0] for task in tasks}
# 使用 tqdm 显示进度
with tqdm(total=len(futures), desc="处理进度", unit="") as pbar:
for future in as_completed(futures):
trade_date = futures[future]
try:
result_date, success = future.result()
if success:
success_count += 1
else:
failed_dates.append(result_date)
except Exception as e:
print(f"\n[{trade_date}] 进程异常: {e}")
failed_dates.append(trade_date)
pbar.update(1)
print("\n" + "=" * 60)
print(f"处理完成: {success_count}/{len(trading_days)} 个交易日")
if failed_dates:
print(f"失败日期: {failed_dates[:10]}{'...' if len(failed_dates) > 10 else ''}")
print(f"数据保存在: {OUTPUT_DIR}")
print("=" * 60)
if __name__ == "__main__":

715
ml/prepare_data_v2.py Normal file
View File

@@ -0,0 +1,715 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
数据准备 V2 - 基于时间片对齐的特征计算(修复版)
核心改进:
1. 时间片对齐9:35 和历史的 9:35 比而不是和前30分钟比
2. Z-Score 特征:相对于同时间片历史分布的偏离程度
3. 滚动窗口基线:每个日期使用它之前 N 天的数据作为基线(不是固定的最后 N 天!)
4. 基于 Z-Score 的动量:消除一天内波动率异构性
修复:
- 滚动窗口基线:避免未来数据泄露
- Z-Score 动量:消除早盘/尾盘波动率差异
- 进程级数据库单例:避免连接池爆炸
"""
import os
import sys
import numpy as np
import pandas as pd
from datetime import datetime, timedelta
from sqlalchemy import create_engine, text
from elasticsearch import Elasticsearch
from clickhouse_driver import Client
from concurrent.futures import ProcessPoolExecutor, as_completed
from typing import Dict, List, Tuple, Optional
from tqdm import tqdm
from collections import defaultdict
import warnings
import pickle
warnings.filterwarnings('ignore')
# ==================== 配置 ====================
MYSQL_URL = "mysql+pymysql://root:Zzl5588161!@192.168.1.5:3306/stock"
ES_HOST = 'http://127.0.0.1:9200'
ES_INDEX = 'concept_library_v3'
CLICKHOUSE_CONFIG = {
'host': '127.0.0.1',
'port': 9000,
'user': 'default',
'password': 'Zzl33818!',
'database': 'stock'
}
REFERENCE_INDEX = '000001.SH'
# 输出目录
OUTPUT_DIR = os.path.join(os.path.dirname(__file__), 'data_v2')
BASELINE_DIR = os.path.join(OUTPUT_DIR, 'baselines')
RAW_CACHE_DIR = os.path.join(OUTPUT_DIR, 'raw_cache')
os.makedirs(OUTPUT_DIR, exist_ok=True)
os.makedirs(BASELINE_DIR, exist_ok=True)
os.makedirs(RAW_CACHE_DIR, exist_ok=True)
# 特征配置
CONFIG = {
'baseline_days': 20, # 滚动窗口大小
'min_baseline_samples': 10, # 最少需要10个样本才算有效基线
'limit_up_threshold': 9.8,
'limit_down_threshold': -9.8,
'zscore_clip': 5.0,
}
# 特征列表
FEATURES_V2 = [
'alpha', 'alpha_zscore', 'amt_zscore', 'rank_zscore',
'momentum_3m', 'momentum_5m', 'limit_up_ratio',
]
# ==================== 进程级单例(避免连接池爆炸)====================
# 进程级全局变量
_process_mysql_engine = None
_process_es_client = None
_process_ch_client = None
def init_process_connections():
"""进程初始化时调用,创建连接(单例)"""
global _process_mysql_engine, _process_es_client, _process_ch_client
_process_mysql_engine = create_engine(MYSQL_URL, echo=False, pool_pre_ping=True, pool_size=5)
_process_es_client = Elasticsearch([ES_HOST])
_process_ch_client = Client(**CLICKHOUSE_CONFIG)
def get_mysql_engine():
"""获取进程级 MySQL Engine单例"""
global _process_mysql_engine
if _process_mysql_engine is None:
_process_mysql_engine = create_engine(MYSQL_URL, echo=False, pool_pre_ping=True, pool_size=5)
return _process_mysql_engine
def get_es_client():
"""获取进程级 ES 客户端(单例)"""
global _process_es_client
if _process_es_client is None:
_process_es_client = Elasticsearch([ES_HOST])
return _process_es_client
def get_ch_client():
"""获取进程级 ClickHouse 客户端(单例)"""
global _process_ch_client
if _process_ch_client is None:
_process_ch_client = Client(**CLICKHOUSE_CONFIG)
return _process_ch_client
# ==================== 工具函数 ====================
def code_to_ch_format(code: str) -> str:
if not code or len(code) != 6 or not code.isdigit():
return None
if code.startswith('6'):
return f"{code}.SH"
elif code.startswith('0') or code.startswith('3'):
return f"{code}.SZ"
else:
return f"{code}.BJ"
def time_to_slot(ts) -> str:
"""将时间戳转换为时间片HH:MM格式"""
if isinstance(ts, str):
return ts
return ts.strftime('%H:%M')
# ==================== 获取概念列表 ====================
def get_all_concepts() -> List[dict]:
"""从ES获取所有叶子概念"""
es_client = get_es_client()
concepts = []
query = {
"query": {"match_all": {}},
"size": 100,
"_source": ["concept_id", "concept", "stocks"]
}
resp = es_client.search(index=ES_INDEX, body=query, scroll='2m')
scroll_id = resp['_scroll_id']
hits = resp['hits']['hits']
while len(hits) > 0:
for hit in hits:
source = hit['_source']
stocks = []
if 'stocks' in source and isinstance(source['stocks'], list):
for stock in source['stocks']:
if isinstance(stock, dict) and 'code' in stock and stock['code']:
stocks.append(stock['code'])
if stocks:
concepts.append({
'concept_id': source.get('concept_id'),
'concept_name': source.get('concept'),
'stocks': stocks
})
resp = es_client.scroll(scroll_id=scroll_id, scroll='2m')
scroll_id = resp['_scroll_id']
hits = resp['hits']['hits']
es_client.clear_scroll(scroll_id=scroll_id)
print(f"获取到 {len(concepts)} 个概念")
return concepts
# ==================== 获取交易日列表 ====================
def get_trading_days(start_date: str, end_date: str) -> List[str]:
"""获取交易日列表"""
client = get_ch_client()
query = f"""
SELECT DISTINCT toDate(timestamp) as trade_date
FROM stock_minute
WHERE toDate(timestamp) >= '{start_date}'
AND toDate(timestamp) <= '{end_date}'
ORDER BY trade_date
"""
result = client.execute(query)
days = [row[0].strftime('%Y-%m-%d') for row in result]
if days:
print(f"找到 {len(days)} 个交易日: {days[0]} ~ {days[-1]}")
return days
# ==================== 获取昨收价 ====================
def get_prev_close(stock_codes: List[str], trade_date: str) -> Dict[str, float]:
"""获取昨收价(上一交易日的收盘价 F007N"""
valid_codes = [c for c in stock_codes if c and len(c) == 6 and c.isdigit()]
if not valid_codes:
return {}
codes_str = "','".join(valid_codes)
query = f"""
SELECT SECCODE, F007N
FROM ea_trade
WHERE SECCODE IN ('{codes_str}')
AND TRADEDATE = (
SELECT MAX(TRADEDATE) FROM ea_trade WHERE TRADEDATE < '{trade_date}'
)
AND F007N IS NOT NULL AND F007N > 0
"""
try:
engine = get_mysql_engine()
with engine.connect() as conn:
result = conn.execute(text(query))
return {row[0]: float(row[1]) for row in result if row[1]}
except Exception as e:
print(f"获取昨收价失败: {e}")
return {}
def get_index_prev_close(trade_date: str, index_code: str = REFERENCE_INDEX) -> float:
"""获取指数昨收价"""
code_no_suffix = index_code.split('.')[0]
try:
engine = get_mysql_engine()
with engine.connect() as conn:
result = conn.execute(text("""
SELECT F006N FROM ea_exchangetrade
WHERE INDEXCODE = :code AND TRADEDATE < :today
ORDER BY TRADEDATE DESC LIMIT 1
"""), {'code': code_no_suffix, 'today': trade_date}).fetchone()
if result and result[0]:
return float(result[0])
except Exception as e:
print(f"获取指数昨收失败: {e}")
return None
# ==================== 获取分钟数据 ====================
def get_daily_stock_data(trade_date: str, stock_codes: List[str]) -> pd.DataFrame:
"""获取单日所有股票的分钟数据"""
client = get_ch_client()
ch_codes = []
code_map = {}
for code in stock_codes:
ch_code = code_to_ch_format(code)
if ch_code:
ch_codes.append(ch_code)
code_map[ch_code] = code
if not ch_codes:
return pd.DataFrame()
ch_codes_str = "','".join(ch_codes)
query = f"""
SELECT code, timestamp, close, volume, amt
FROM stock_minute
WHERE toDate(timestamp) = '{trade_date}'
AND code IN ('{ch_codes_str}')
ORDER BY code, timestamp
"""
result = client.execute(query)
if not result:
return pd.DataFrame()
df = pd.DataFrame(result, columns=['ch_code', 'timestamp', 'close', 'volume', 'amt'])
df['code'] = df['ch_code'].map(code_map)
df = df.dropna(subset=['code'])
return df[['code', 'timestamp', 'close', 'volume', 'amt']]
def get_daily_index_data(trade_date: str, index_code: str = REFERENCE_INDEX) -> pd.DataFrame:
"""获取单日指数分钟数据"""
client = get_ch_client()
query = f"""
SELECT timestamp, close, volume, amt
FROM index_minute
WHERE toDate(timestamp) = '{trade_date}'
AND code = '{index_code}'
ORDER BY timestamp
"""
result = client.execute(query)
if not result:
return pd.DataFrame()
df = pd.DataFrame(result, columns=['timestamp', 'close', 'volume', 'amt'])
return df
# ==================== 计算原始概念特征(单日)====================
def compute_raw_concept_features(
trade_date: str,
concepts: List[dict],
all_stocks: List[str]
) -> pd.DataFrame:
"""计算单日概念的原始特征alpha, amt, rank_pct, limit_up_ratio"""
# 检查缓存
cache_file = os.path.join(RAW_CACHE_DIR, f'raw_{trade_date}.parquet')
if os.path.exists(cache_file):
return pd.read_parquet(cache_file)
# 获取数据
stock_df = get_daily_stock_data(trade_date, all_stocks)
if stock_df.empty:
return pd.DataFrame()
index_df = get_daily_index_data(trade_date)
if index_df.empty:
return pd.DataFrame()
# 获取昨收价
prev_close = get_prev_close(all_stocks, trade_date)
index_prev_close = get_index_prev_close(trade_date)
if not prev_close or not index_prev_close:
return pd.DataFrame()
# 计算涨跌幅
stock_df['prev_close'] = stock_df['code'].map(prev_close)
stock_df = stock_df.dropna(subset=['prev_close'])
stock_df['change_pct'] = (stock_df['close'] - stock_df['prev_close']) / stock_df['prev_close'] * 100
index_df['change_pct'] = (index_df['close'] - index_prev_close) / index_prev_close * 100
index_change_map = dict(zip(index_df['timestamp'], index_df['change_pct']))
# 获取所有时间点
timestamps = sorted(stock_df['timestamp'].unique())
# 概念到股票的映射
concept_stocks = {c['concept_id']: set(c['stocks']) for c in concepts}
results = []
for ts in timestamps:
ts_stock_data = stock_df[stock_df['timestamp'] == ts]
index_change = index_change_map.get(ts, 0)
stock_change = dict(zip(ts_stock_data['code'], ts_stock_data['change_pct']))
stock_amt = dict(zip(ts_stock_data['code'], ts_stock_data['amt']))
concept_features = []
for concept_id, stocks in concept_stocks.items():
concept_changes = [stock_change[s] for s in stocks if s in stock_change]
concept_amts = [stock_amt.get(s, 0) for s in stocks if s in stock_change]
if not concept_changes:
continue
avg_change = np.mean(concept_changes)
total_amt = sum(concept_amts)
alpha = avg_change - index_change
limit_up_count = sum(1 for c in concept_changes if c >= CONFIG['limit_up_threshold'])
limit_up_ratio = limit_up_count / len(concept_changes)
concept_features.append({
'concept_id': concept_id,
'alpha': alpha,
'total_amt': total_amt,
'limit_up_ratio': limit_up_ratio,
'stock_count': len(concept_changes),
})
if not concept_features:
continue
concept_df = pd.DataFrame(concept_features)
concept_df['rank_pct'] = concept_df['alpha'].rank(pct=True)
concept_df['timestamp'] = ts
concept_df['time_slot'] = time_to_slot(ts)
concept_df['trade_date'] = trade_date
results.append(concept_df)
if not results:
return pd.DataFrame()
result_df = pd.concat(results, ignore_index=True)
# 保存缓存
result_df.to_parquet(cache_file, index=False)
return result_df
# ==================== 滚动窗口基线计算 ====================
def compute_rolling_baseline(
historical_data: pd.DataFrame,
concept_id: str
) -> Dict[str, Dict]:
"""
计算单个概念的滚动基线
返回: {time_slot: {alpha_mean, alpha_std, amt_mean, amt_std, rank_mean, rank_std, sample_count}}
"""
if historical_data.empty:
return {}
concept_data = historical_data[historical_data['concept_id'] == concept_id]
if concept_data.empty:
return {}
baseline_dict = {}
for time_slot, group in concept_data.groupby('time_slot'):
if len(group) < CONFIG['min_baseline_samples']:
continue
alpha_std = group['alpha'].std()
amt_std = group['total_amt'].std()
rank_std = group['rank_pct'].std()
baseline_dict[time_slot] = {
'alpha_mean': group['alpha'].mean(),
'alpha_std': max(alpha_std if pd.notna(alpha_std) else 1.0, 0.1),
'amt_mean': group['total_amt'].mean(),
'amt_std': max(amt_std if pd.notna(amt_std) else group['total_amt'].mean() * 0.5, 1.0),
'rank_mean': group['rank_pct'].mean(),
'rank_std': max(rank_std if pd.notna(rank_std) else 0.2, 0.05),
'sample_count': len(group),
}
return baseline_dict
# ==================== 计算单日 Z-Score 特征(带滚动基线)====================
def compute_zscore_features_rolling(
trade_date: str,
concepts: List[dict],
all_stocks: List[str],
historical_raw_data: pd.DataFrame # 该日期之前 N 天的原始数据
) -> pd.DataFrame:
"""
计算单日的 Z-Score 特征(使用滚动窗口基线)
关键改进:
1. 基线只使用 trade_date 之前的数据(无未来泄露)
2. 动量基于 Z-Score 计算(消除波动率异构性)
"""
# 计算当日原始特征
raw_df = compute_raw_concept_features(trade_date, concepts, all_stocks)
if raw_df.empty:
return pd.DataFrame()
zscore_records = []
for concept_id, group in raw_df.groupby('concept_id'):
# 计算该概念的滚动基线(只用历史数据)
baseline_dict = compute_rolling_baseline(historical_raw_data, concept_id)
if not baseline_dict:
continue
# 按时间排序
group = group.sort_values('timestamp').reset_index(drop=True)
# Z-Score 历史(用于计算基于 Z-Score 的动量)
zscore_history = []
for idx, row in group.iterrows():
time_slot = row['time_slot']
if time_slot not in baseline_dict:
continue
bl = baseline_dict[time_slot]
# 计算 Z-Score
alpha_zscore = (row['alpha'] - bl['alpha_mean']) / bl['alpha_std']
amt_zscore = (row['total_amt'] - bl['amt_mean']) / bl['amt_std']
rank_zscore = (row['rank_pct'] - bl['rank_mean']) / bl['rank_std']
# 截断极端值
clip = CONFIG['zscore_clip']
alpha_zscore = np.clip(alpha_zscore, -clip, clip)
amt_zscore = np.clip(amt_zscore, -clip, clip)
rank_zscore = np.clip(rank_zscore, -clip, clip)
# 记录 Z-Score 历史
zscore_history.append(alpha_zscore)
# 基于 Z-Score 计算动量(消除波动率异构性)
momentum_3m = 0.0
momentum_5m = 0.0
if len(zscore_history) >= 3:
recent_3 = zscore_history[-3:]
older_3 = zscore_history[-6:-3] if len(zscore_history) >= 6 else [zscore_history[0]]
momentum_3m = np.mean(recent_3) - np.mean(older_3)
if len(zscore_history) >= 5:
recent_5 = zscore_history[-5:]
older_5 = zscore_history[-10:-5] if len(zscore_history) >= 10 else [zscore_history[0]]
momentum_5m = np.mean(recent_5) - np.mean(older_5)
zscore_records.append({
'concept_id': concept_id,
'timestamp': row['timestamp'],
'time_slot': time_slot,
'trade_date': trade_date,
# 原始特征
'alpha': row['alpha'],
'total_amt': row['total_amt'],
'limit_up_ratio': row['limit_up_ratio'],
'stock_count': row['stock_count'],
'rank_pct': row['rank_pct'],
# Z-Score 特征
'alpha_zscore': alpha_zscore,
'amt_zscore': amt_zscore,
'rank_zscore': rank_zscore,
# 基于 Z-Score 的动量
'momentum_3m': momentum_3m,
'momentum_5m': momentum_5m,
})
if not zscore_records:
return pd.DataFrame()
return pd.DataFrame(zscore_records)
# ==================== 多进程处理 ====================
def process_single_day_v2(args) -> Tuple[str, bool]:
"""处理单个交易日(多进程版本)"""
trade_date, day_index, concepts, all_stocks, all_trading_days = args
output_file = os.path.join(OUTPUT_DIR, f'features_v2_{trade_date}.parquet')
if os.path.exists(output_file):
return (trade_date, True)
try:
# 计算滚动窗口范围(该日期之前的 N 天)
baseline_days = CONFIG['baseline_days']
# 找出 trade_date 之前的交易日
start_idx = max(0, day_index - baseline_days)
end_idx = day_index # 不包含当天
if end_idx <= start_idx:
# 没有足够的历史数据
return (trade_date, False)
historical_days = all_trading_days[start_idx:end_idx]
# 加载历史原始数据
historical_dfs = []
for hist_date in historical_days:
cache_file = os.path.join(RAW_CACHE_DIR, f'raw_{hist_date}.parquet')
if os.path.exists(cache_file):
historical_dfs.append(pd.read_parquet(cache_file))
else:
# 需要计算
hist_df = compute_raw_concept_features(hist_date, concepts, all_stocks)
if not hist_df.empty:
historical_dfs.append(hist_df)
if not historical_dfs:
return (trade_date, False)
historical_raw_data = pd.concat(historical_dfs, ignore_index=True)
# 计算当日 Z-Score 特征(使用滚动基线)
df = compute_zscore_features_rolling(trade_date, concepts, all_stocks, historical_raw_data)
if df.empty:
return (trade_date, False)
df.to_parquet(output_file, index=False)
return (trade_date, True)
except Exception as e:
print(f"[{trade_date}] 处理失败: {e}")
import traceback
traceback.print_exc()
return (trade_date, False)
# ==================== 主流程 ====================
def main():
import argparse
parser = argparse.ArgumentParser(description='准备训练数据 V2滚动窗口基线 + Z-Score 动量)')
parser.add_argument('--start', type=str, default='2022-01-01', help='开始日期')
parser.add_argument('--end', type=str, default=None, help='结束日期(默认今天)')
parser.add_argument('--workers', type=int, default=18, help='并行进程数')
parser.add_argument('--baseline-days', type=int, default=20, help='滚动基线窗口大小')
parser.add_argument('--force', action='store_true', help='强制重新计算(忽略缓存)')
args = parser.parse_args()
end_date = args.end or datetime.now().strftime('%Y-%m-%d')
CONFIG['baseline_days'] = args.baseline_days
print("=" * 60)
print("数据准备 V2 - 滚动窗口基线 + Z-Score 动量")
print("=" * 60)
print(f"日期范围: {args.start} ~ {end_date}")
print(f"并行进程数: {args.workers}")
print(f"滚动基线窗口: {args.baseline_days}")
# 初始化主进程连接
init_process_connections()
# 1. 获取概念列表
concepts = get_all_concepts()
all_stocks = list(set(s for c in concepts for s in c['stocks']))
print(f"股票总数: {len(all_stocks)}")
# 2. 获取交易日列表
trading_days = get_trading_days(args.start, end_date)
if not trading_days:
print("无交易日数据")
return
# 3. 第一阶段:预计算所有原始特征(用于缓存)
print(f"\n{'='*60}")
print("第一阶段:预计算原始特征(用于滚动基线)")
print(f"{'='*60}")
# 如果强制重新计算,删除缓存
if args.force:
import shutil
if os.path.exists(RAW_CACHE_DIR):
shutil.rmtree(RAW_CACHE_DIR)
os.makedirs(RAW_CACHE_DIR, exist_ok=True)
if os.path.exists(OUTPUT_DIR):
for f in os.listdir(OUTPUT_DIR):
if f.startswith('features_v2_'):
os.remove(os.path.join(OUTPUT_DIR, f))
# 单线程预计算原始特征(因为需要顺序缓存)
print(f"预计算 {len(trading_days)} 天的原始特征...")
for trade_date in tqdm(trading_days, desc="预计算原始特征"):
cache_file = os.path.join(RAW_CACHE_DIR, f'raw_{trade_date}.parquet')
if not os.path.exists(cache_file):
compute_raw_concept_features(trade_date, concepts, all_stocks)
# 4. 第二阶段:计算 Z-Score 特征(多进程)
print(f"\n{'='*60}")
print("第二阶段:计算 Z-Score 特征(滚动基线)")
print(f"{'='*60}")
# 从第 baseline_days 天开始(前面的没有足够历史)
start_idx = args.baseline_days
processable_days = trading_days[start_idx:]
if not processable_days:
print(f"错误:需要至少 {args.baseline_days + 1} 天的数据")
return
print(f"可处理日期: {processable_days[0]} ~ {processable_days[-1]} ({len(processable_days)} 天)")
print(f"跳过前 {start_idx} 天(基线预热期)")
# 构建任务
tasks = []
for i, trade_date in enumerate(trading_days):
if i >= start_idx:
tasks.append((trade_date, i, concepts, all_stocks, trading_days))
print(f"开始处理 {len(tasks)} 个交易日({args.workers} 进程并行)...")
success_count = 0
failed_dates = []
# 使用进程池初始化器
with ProcessPoolExecutor(max_workers=args.workers, initializer=init_process_connections) as executor:
futures = {executor.submit(process_single_day_v2, task): task[0] for task in tasks}
with tqdm(total=len(futures), desc="处理进度", unit="") as pbar:
for future in as_completed(futures):
trade_date = futures[future]
try:
result_date, success = future.result()
if success:
success_count += 1
else:
failed_dates.append(result_date)
except Exception as e:
print(f"\n[{trade_date}] 进程异常: {e}")
failed_dates.append(trade_date)
pbar.update(1)
print("\n" + "=" * 60)
print(f"处理完成: {success_count}/{len(tasks)} 个交易日")
if failed_dates:
print(f"失败日期: {failed_dates[:10]}{'...' if len(failed_dates) > 10 else ''}")
print(f"数据保存在: {OUTPUT_DIR}")
print("=" * 60)
if __name__ == "__main__":
main()

View File

@@ -190,20 +190,22 @@ def get_all_concepts() -> List[dict]:
def get_prev_close(stock_codes: List[str], trade_date: str) -> Dict[str, float]:
"""获取昨收价"""
"""获取昨收价(上一交易日的收盘价 F007N"""
valid_codes = [c for c in stock_codes if c and len(c) == 6 and c.isdigit()]
if not valid_codes:
return {}
codes_str = "','".join(valid_codes)
# 注意F007N 是"最近成交价"即当日收盘价F002N 是"昨日收盘价"
# 我们需要查上一交易日的 F007N那天的收盘价作为今天的昨收
query = f"""
SELECT SECCODE, F002N
SELECT SECCODE, F007N
FROM ea_trade
WHERE SECCODE IN ('{codes_str}')
AND TRADEDATE = (
SELECT MAX(TRADEDATE) FROM ea_trade WHERE TRADEDATE < '{trade_date}'
)
AND F002N IS NOT NULL AND F002N > 0
AND F007N IS NOT NULL AND F007N > 0
"""
try:

729
ml/realtime_detector_v2.py Normal file
View File

@@ -0,0 +1,729 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
V2 实时异动检测器
使用方法:
# 作为模块导入
from ml.realtime_detector_v2 import RealtimeDetectorV2
detector = RealtimeDetectorV2()
alerts = detector.detect_realtime() # 检测当前时刻
# 或命令行测试
python ml/realtime_detector_v2.py --date 2025-12-09
"""
import os
import sys
import json
import pickle
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Tuple
from collections import defaultdict, deque
import numpy as np
import pandas as pd
import torch
from sqlalchemy import create_engine, text
from elasticsearch import Elasticsearch
from clickhouse_driver import Client
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from ml.model import TransformerAutoencoder
# ==================== 配置 ====================
MYSQL_URL = "mysql+pymysql://root:Zzl5588161!@192.168.1.5:3306/stock"
ES_HOST = 'http://127.0.0.1:9200'
ES_INDEX = 'concept_library_v3'
CLICKHOUSE_CONFIG = {
'host': '127.0.0.1',
'port': 9000,
'user': 'default',
'password': 'Zzl33818!',
'database': 'stock'
}
REFERENCE_INDEX = '000001.SH'
BASELINE_FILE = 'ml/data_v2/baselines/realtime_baseline.pkl'
MODEL_DIR = 'ml/checkpoints_v2'
# 检测配置
CONFIG = {
'seq_len': 10, # LSTM 序列长度
'confirm_window': 5, # 持续确认窗口
'confirm_ratio': 0.6, # 确认比例
'rule_weight': 0.5,
'ml_weight': 0.5,
'rule_trigger': 60,
'ml_trigger': 70,
'fusion_trigger': 50,
'cooldown_minutes': 10,
'max_alerts_per_minute': 15,
'zscore_clip': 5.0,
'limit_up_threshold': 9.8,
}
FEATURES = ['alpha_zscore', 'amt_zscore', 'rank_zscore', 'momentum_3m', 'momentum_5m', 'limit_up_ratio']
# ==================== 数据库连接 ====================
_mysql_engine = None
_es_client = None
_ch_client = None
def get_mysql_engine():
global _mysql_engine
if _mysql_engine is None:
_mysql_engine = create_engine(MYSQL_URL, echo=False, pool_pre_ping=True)
return _mysql_engine
def get_es_client():
global _es_client
if _es_client is None:
_es_client = Elasticsearch([ES_HOST])
return _es_client
def get_ch_client():
global _ch_client
if _ch_client is None:
_ch_client = Client(**CLICKHOUSE_CONFIG)
return _ch_client
def code_to_ch_format(code: str) -> str:
if not code or len(code) != 6 or not code.isdigit():
return None
if code.startswith('6'):
return f"{code}.SH"
elif code.startswith('0') or code.startswith('3'):
return f"{code}.SZ"
return f"{code}.BJ"
def time_to_slot(ts) -> str:
if isinstance(ts, str):
return ts
return ts.strftime('%H:%M')
# ==================== 规则评分 ====================
def score_rules_zscore(features: Dict) -> Tuple[float, List[str]]:
"""基于 Z-Score 的规则评分"""
score = 0.0
triggered = []
alpha_z = abs(features.get('alpha_zscore', 0))
amt_z = features.get('amt_zscore', 0)
rank_z = abs(features.get('rank_zscore', 0))
mom_3m = features.get('momentum_3m', 0)
mom_5m = features.get('momentum_5m', 0)
limit_up = features.get('limit_up_ratio', 0)
# Alpha Z-Score
if alpha_z >= 4.0:
score += 25
triggered.append('alpha_extreme')
elif alpha_z >= 3.0:
score += 18
triggered.append('alpha_strong')
elif alpha_z >= 2.0:
score += 10
triggered.append('alpha_moderate')
# 成交额 Z-Score
if amt_z >= 4.0:
score += 20
triggered.append('amt_extreme')
elif amt_z >= 3.0:
score += 12
triggered.append('amt_strong')
elif amt_z >= 2.0:
score += 6
triggered.append('amt_moderate')
# 排名 Z-Score
if rank_z >= 3.0:
score += 15
triggered.append('rank_extreme')
elif rank_z >= 2.0:
score += 8
triggered.append('rank_strong')
# 动量(基于 Z-Score 的)
if mom_3m >= 1.0:
score += 12
triggered.append('momentum_3m_strong')
elif mom_3m >= 0.5:
score += 6
triggered.append('momentum_3m_moderate')
if mom_5m >= 1.5:
score += 10
triggered.append('momentum_5m_strong')
# 涨停比例
if limit_up >= 0.3:
score += 20
triggered.append('limit_up_extreme')
elif limit_up >= 0.15:
score += 12
triggered.append('limit_up_strong')
elif limit_up >= 0.08:
score += 5
triggered.append('limit_up_moderate')
# 组合规则
if alpha_z >= 2.0 and amt_z >= 2.0:
score += 15
triggered.append('combo_alpha_amt')
if alpha_z >= 2.0 and limit_up >= 0.1:
score += 12
triggered.append('combo_alpha_limitup')
return min(score, 100), triggered
# ==================== 实时检测器 ====================
class RealtimeDetectorV2:
"""V2 实时异动检测器"""
def __init__(self, model_dir: str = MODEL_DIR, baseline_file: str = BASELINE_FILE):
print("初始化 V2 实时检测器...")
# 加载概念
self.concepts = self._load_concepts()
self.concept_stocks = {c['concept_id']: set(c['stocks']) for c in self.concepts}
self.all_stocks = list(set(s for c in self.concepts for s in c['stocks']))
# 加载基线
self.baselines = self._load_baselines(baseline_file)
# 加载模型
self.model, self.thresholds, self.device = self._load_model(model_dir)
# 状态管理
self.zscore_history = defaultdict(lambda: deque(maxlen=CONFIG['seq_len']))
self.anomaly_candidates = defaultdict(lambda: deque(maxlen=CONFIG['confirm_window']))
self.cooldown = {}
print(f"初始化完成: {len(self.concepts)} 概念, {len(self.baselines)} 基线")
def _load_concepts(self) -> List[dict]:
"""从 ES 加载概念"""
es = get_es_client()
concepts = []
query = {"query": {"match_all": {}}, "size": 100, "_source": ["concept_id", "concept", "stocks"]}
resp = es.search(index=ES_INDEX, body=query, scroll='2m')
scroll_id = resp['_scroll_id']
hits = resp['hits']['hits']
while hits:
for hit in hits:
src = hit['_source']
stocks = [s['code'] for s in src.get('stocks', []) if isinstance(s, dict) and s.get('code')]
if stocks:
concepts.append({
'concept_id': src.get('concept_id'),
'concept_name': src.get('concept'),
'stocks': stocks
})
resp = es.scroll(scroll_id=scroll_id, scroll='2m')
scroll_id = resp['_scroll_id']
hits = resp['hits']['hits']
es.clear_scroll(scroll_id=scroll_id)
return concepts
def _load_baselines(self, baseline_file: str) -> Dict:
"""加载基线"""
if not os.path.exists(baseline_file):
print(f"警告: 基线文件不存在: {baseline_file}")
print("请先运行: python ml/update_baseline.py")
return {}
with open(baseline_file, 'rb') as f:
data = pickle.load(f)
print(f"基线日期范围: {data.get('date_range', 'unknown')}")
print(f"更新时间: {data.get('update_time', 'unknown')}")
return data.get('baselines', {})
def _load_model(self, model_dir: str):
"""加载模型"""
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
config_path = os.path.join(model_dir, 'config.json')
model_path = os.path.join(model_dir, 'best_model.pt')
threshold_path = os.path.join(model_dir, 'thresholds.json')
if not os.path.exists(model_path):
print(f"警告: 模型不存在: {model_path}")
return None, {}, device
with open(config_path) as f:
config = json.load(f)
model = TransformerAutoencoder(**config['model'])
checkpoint = torch.load(model_path, map_location=device)
model.load_state_dict(checkpoint['model_state_dict'])
model.to(device)
model.eval()
thresholds = {}
if os.path.exists(threshold_path):
with open(threshold_path) as f:
thresholds = json.load(f)
print(f"模型已加载: {model_path}")
return model, thresholds, device
def _get_realtime_data(self, trade_date: str) -> pd.DataFrame:
"""获取实时数据并计算原始特征"""
ch = get_ch_client()
# 获取股票数据
ch_codes = [code_to_ch_format(c) for c in self.all_stocks if code_to_ch_format(c)]
ch_codes_str = "','".join(ch_codes)
stock_query = f"""
SELECT code, timestamp, close, amt
FROM stock_minute
WHERE toDate(timestamp) = '{trade_date}'
AND code IN ('{ch_codes_str}')
ORDER BY timestamp
"""
stock_result = ch.execute(stock_query)
if not stock_result:
return pd.DataFrame()
stock_df = pd.DataFrame(stock_result, columns=['ch_code', 'timestamp', 'close', 'amt'])
# 映射回原始代码
ch_to_code = {code_to_ch_format(c): c for c in self.all_stocks if code_to_ch_format(c)}
stock_df['code'] = stock_df['ch_code'].map(ch_to_code)
stock_df = stock_df.dropna(subset=['code'])
# 获取指数数据
index_query = f"""
SELECT timestamp, close
FROM index_minute
WHERE toDate(timestamp) = '{trade_date}'
AND code = '{REFERENCE_INDEX}'
ORDER BY timestamp
"""
index_result = ch.execute(index_query)
if not index_result:
return pd.DataFrame()
index_df = pd.DataFrame(index_result, columns=['timestamp', 'close'])
# 获取昨收价
engine = get_mysql_engine()
codes_str = "','".join([c for c in self.all_stocks if c and len(c) == 6])
with engine.connect() as conn:
prev_result = conn.execute(text(f"""
SELECT SECCODE, F007N FROM ea_trade
WHERE SECCODE IN ('{codes_str}')
AND TRADEDATE = (SELECT MAX(TRADEDATE) FROM ea_trade WHERE TRADEDATE < '{trade_date}')
AND F007N > 0
"""))
prev_close = {row[0]: float(row[1]) for row in prev_result if row[1]}
idx_result = conn.execute(text("""
SELECT F006N FROM ea_exchangetrade
WHERE INDEXCODE = '000001' AND TRADEDATE < :today
ORDER BY TRADEDATE DESC LIMIT 1
"""), {'today': trade_date}).fetchone()
index_prev_close = float(idx_result[0]) if idx_result else None
if not prev_close or not index_prev_close:
return pd.DataFrame()
# 计算涨跌幅
stock_df['prev_close'] = stock_df['code'].map(prev_close)
stock_df = stock_df.dropna(subset=['prev_close'])
stock_df['change_pct'] = (stock_df['close'] - stock_df['prev_close']) / stock_df['prev_close'] * 100
index_df['change_pct'] = (index_df['close'] - index_prev_close) / index_prev_close * 100
index_map = dict(zip(index_df['timestamp'], index_df['change_pct']))
# 按时间聚合概念特征
results = []
for ts in sorted(stock_df['timestamp'].unique()):
ts_data = stock_df[stock_df['timestamp'] == ts]
idx_chg = index_map.get(ts, 0)
stock_chg = dict(zip(ts_data['code'], ts_data['change_pct']))
stock_amt = dict(zip(ts_data['code'], ts_data['amt']))
for cid, stocks in self.concept_stocks.items():
changes = [stock_chg[s] for s in stocks if s in stock_chg]
amts = [stock_amt.get(s, 0) for s in stocks if s in stock_chg]
if not changes:
continue
alpha = np.mean(changes) - idx_chg
total_amt = sum(amts)
limit_up_ratio = sum(1 for c in changes if c >= CONFIG['limit_up_threshold']) / len(changes)
results.append({
'concept_id': cid,
'timestamp': ts,
'time_slot': time_to_slot(ts),
'alpha': alpha,
'total_amt': total_amt,
'limit_up_ratio': limit_up_ratio,
'stock_count': len(changes),
})
if not results:
return pd.DataFrame()
df = pd.DataFrame(results)
# 计算排名
for ts in df['timestamp'].unique():
mask = df['timestamp'] == ts
df.loc[mask, 'rank_pct'] = df.loc[mask, 'alpha'].rank(pct=True)
return df
def _compute_zscore(self, concept_id: str, time_slot: str, alpha: float, total_amt: float, rank_pct: float) -> Optional[Dict]:
"""计算 Z-Score"""
if concept_id not in self.baselines:
return None
baseline = self.baselines[concept_id]
if time_slot not in baseline:
return None
bl = baseline[time_slot]
alpha_z = np.clip((alpha - bl['alpha_mean']) / bl['alpha_std'], -5, 5)
amt_z = np.clip((total_amt - bl['amt_mean']) / bl['amt_std'], -5, 5)
rank_z = np.clip((rank_pct - bl['rank_mean']) / bl['rank_std'], -5, 5)
# 动量(基于 Z-Score 历史)
history = list(self.zscore_history[concept_id])
mom_3m = 0.0
mom_5m = 0.0
if len(history) >= 3:
recent = [h['alpha_zscore'] for h in history[-3:]]
older = [h['alpha_zscore'] for h in history[-6:-3]] if len(history) >= 6 else [history[0]['alpha_zscore']]
mom_3m = np.mean(recent) - np.mean(older)
if len(history) >= 5:
recent = [h['alpha_zscore'] for h in history[-5:]]
older = [h['alpha_zscore'] for h in history[-10:-5]] if len(history) >= 10 else [history[0]['alpha_zscore']]
mom_5m = np.mean(recent) - np.mean(older)
return {
'alpha_zscore': float(alpha_z),
'amt_zscore': float(amt_z),
'rank_zscore': float(rank_z),
'momentum_3m': float(mom_3m),
'momentum_5m': float(mom_5m),
}
@torch.no_grad()
def _ml_score(self, sequences: np.ndarray) -> np.ndarray:
"""批量 ML 评分"""
if self.model is None or len(sequences) == 0:
return np.zeros(len(sequences))
x = torch.FloatTensor(sequences).to(self.device)
errors = self.model.compute_reconstruction_error(x, reduction='none')
last_errors = errors[:, -1].cpu().numpy()
# 转换为 0-100 分数
if self.thresholds:
p50 = self.thresholds.get('median', 0.001)
p99 = self.thresholds.get('p99', 0.05)
scores = 50 + (last_errors - p50) / (p99 - p50 + 1e-6) * 49
else:
scores = last_errors * 1000
return np.clip(scores, 0, 100)
def detect(self, trade_date: str = None) -> List[Dict]:
"""检测指定日期的异动"""
trade_date = trade_date or datetime.now().strftime('%Y-%m-%d')
print(f"\n检测 {trade_date} 的异动...")
# 重置状态
self.zscore_history.clear()
self.anomaly_candidates.clear()
self.cooldown.clear()
# 获取数据
raw_df = self._get_realtime_data(trade_date)
if raw_df.empty:
print("无数据")
return []
timestamps = sorted(raw_df['timestamp'].unique())
print(f"时间点数: {len(timestamps)}")
all_alerts = []
for ts in timestamps:
ts_data = raw_df[raw_df['timestamp'] == ts]
time_slot = time_to_slot(ts)
candidates = []
# 计算每个概念的 Z-Score
for _, row in ts_data.iterrows():
cid = row['concept_id']
zscore = self._compute_zscore(
cid, time_slot,
row['alpha'], row['total_amt'], row['rank_pct']
)
if zscore is None:
continue
# 完整特征
features = {
**zscore,
'alpha': row['alpha'],
'limit_up_ratio': row['limit_up_ratio'],
'total_amt': row['total_amt'],
}
# 更新历史
self.zscore_history[cid].append(zscore)
# 规则评分
rule_score, triggered = score_rules_zscore(features)
candidates.append((cid, features, rule_score, triggered))
if not candidates:
continue
# 批量 ML 评分
sequences = []
valid_candidates = []
for cid, features, rule_score, triggered in candidates:
history = list(self.zscore_history[cid])
if len(history) >= CONFIG['seq_len']:
seq = np.array([[h['alpha_zscore'], h['amt_zscore'], h['rank_zscore'],
h['momentum_3m'], h['momentum_5m'], features['limit_up_ratio']]
for h in history])
sequences.append(seq)
valid_candidates.append((cid, features, rule_score, triggered))
if not sequences:
continue
ml_scores = self._ml_score(np.array(sequences))
# 融合 + 确认
for i, (cid, features, rule_score, triggered) in enumerate(valid_candidates):
ml_score = ml_scores[i]
final_score = CONFIG['rule_weight'] * rule_score + CONFIG['ml_weight'] * ml_score
# 判断触发
is_triggered = (
rule_score >= CONFIG['rule_trigger'] or
ml_score >= CONFIG['ml_trigger'] or
final_score >= CONFIG['fusion_trigger']
)
self.anomaly_candidates[cid].append((ts, final_score))
if not is_triggered:
continue
# 冷却期
if cid in self.cooldown:
if (ts - self.cooldown[cid]).total_seconds() < CONFIG['cooldown_minutes'] * 60:
continue
# 持续确认
recent = list(self.anomaly_candidates[cid])
if len(recent) < CONFIG['confirm_window']:
continue
exceed = sum(1 for _, s in recent if s >= CONFIG['fusion_trigger'])
ratio = exceed / len(recent)
if ratio < CONFIG['confirm_ratio']:
continue
# 确认异动!
self.cooldown[cid] = ts
alpha = features['alpha']
alert_type = 'surge_up' if alpha >= 1.5 else 'surge_down' if alpha <= -1.5 else 'surge'
concept_name = next((c['concept_name'] for c in self.concepts if c['concept_id'] == cid), cid)
all_alerts.append({
'concept_id': cid,
'concept_name': concept_name,
'alert_time': ts,
'trade_date': trade_date,
'alert_type': alert_type,
'final_score': float(final_score),
'rule_score': float(rule_score),
'ml_score': float(ml_score),
'confirm_ratio': float(ratio),
'alpha': float(alpha),
'alpha_zscore': float(features['alpha_zscore']),
'amt_zscore': float(features['amt_zscore']),
'rank_zscore': float(features['rank_zscore']),
'momentum_3m': float(features['momentum_3m']),
'momentum_5m': float(features['momentum_5m']),
'limit_up_ratio': float(features['limit_up_ratio']),
'triggered_rules': triggered,
'trigger_reason': f"融合({final_score:.0f})+确认({ratio:.0%})",
})
print(f"检测到 {len(all_alerts)} 个异动")
return all_alerts
# ==================== 数据库存储 ====================
def create_v2_table():
"""创建 V2 异动表(如果不存在)"""
engine = get_mysql_engine()
with engine.begin() as conn:
conn.execute(text("""
CREATE TABLE IF NOT EXISTS concept_anomaly_v2 (
id INT AUTO_INCREMENT PRIMARY KEY,
concept_id VARCHAR(50) NOT NULL,
alert_time DATETIME NOT NULL,
trade_date DATE NOT NULL,
alert_type VARCHAR(20) NOT NULL,
final_score FLOAT,
rule_score FLOAT,
ml_score FLOAT,
trigger_reason VARCHAR(200),
confirm_ratio FLOAT,
alpha FLOAT,
alpha_zscore FLOAT,
amt_zscore FLOAT,
rank_zscore FLOAT,
momentum_3m FLOAT,
momentum_5m FLOAT,
limit_up_ratio FLOAT,
triggered_rules TEXT,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
UNIQUE KEY uk_concept_time (concept_id, alert_time),
INDEX idx_trade_date (trade_date),
INDEX idx_alert_type (alert_type)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4
"""))
print("concept_anomaly_v2 表已就绪")
def save_alerts_to_db(alerts: List[Dict]) -> int:
"""保存异动到数据库"""
if not alerts:
return 0
engine = get_mysql_engine()
saved = 0
with engine.begin() as conn:
for alert in alerts:
try:
insert_sql = text("""
INSERT IGNORE INTO concept_anomaly_v2
(concept_id, alert_time, trade_date, alert_type,
final_score, rule_score, ml_score, trigger_reason, confirm_ratio,
alpha, alpha_zscore, amt_zscore, rank_zscore,
momentum_3m, momentum_5m, limit_up_ratio, triggered_rules)
VALUES
(:concept_id, :alert_time, :trade_date, :alert_type,
:final_score, :rule_score, :ml_score, :trigger_reason, :confirm_ratio,
:alpha, :alpha_zscore, :amt_zscore, :rank_zscore,
:momentum_3m, :momentum_5m, :limit_up_ratio, :triggered_rules)
""")
result = conn.execute(insert_sql, {
'concept_id': alert['concept_id'],
'alert_time': alert['alert_time'],
'trade_date': alert['trade_date'],
'alert_type': alert['alert_type'],
'final_score': alert['final_score'],
'rule_score': alert['rule_score'],
'ml_score': alert['ml_score'],
'trigger_reason': alert['trigger_reason'],
'confirm_ratio': alert['confirm_ratio'],
'alpha': alert['alpha'],
'alpha_zscore': alert['alpha_zscore'],
'amt_zscore': alert['amt_zscore'],
'rank_zscore': alert['rank_zscore'],
'momentum_3m': alert['momentum_3m'],
'momentum_5m': alert['momentum_5m'],
'limit_up_ratio': alert['limit_up_ratio'],
'triggered_rules': json.dumps(alert.get('triggered_rules', []), ensure_ascii=False),
})
if result.rowcount > 0:
saved += 1
except Exception as e:
print(f"保存失败: {alert['concept_id']} - {e}")
return saved
def main():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--date', type=str, default=None)
parser.add_argument('--no-save', action='store_true', help='不保存到数据库,只打印')
args = parser.parse_args()
# 确保表存在
if not args.no_save:
create_v2_table()
detector = RealtimeDetectorV2()
alerts = detector.detect(args.date)
print(f"\n{'='*60}")
print(f"检测结果 ({len(alerts)} 个异动)")
print('='*60)
for a in alerts[:20]:
print(f"[{a['alert_time'].strftime('%H:%M') if hasattr(a['alert_time'], 'strftime') else a['alert_time']}] "
f"{a['concept_name']} | {a['alert_type']} | "
f"分数={a['final_score']:.0f} 确认={a['confirm_ratio']:.0%} "
f"α={a['alpha']:.2f}% αZ={a['alpha_zscore']:.1f}")
if len(alerts) > 20:
print(f"... 共 {len(alerts)}")
# 保存到数据库
if not args.no_save and alerts:
saved = save_alerts_to_db(alerts)
print(f"\n✅ 已保存 {saved}/{len(alerts)} 条到 concept_anomaly_v2 表")
elif args.no_save:
print(f"\n⚠️ --no-save 模式,未保存到数据库")
if __name__ == "__main__":
main()

622
ml/train_v2.py Normal file
View File

@@ -0,0 +1,622 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
训练脚本 V2 - 基于 Z-Score 特征的 LSTM Autoencoder
改进点:
1. 使用 Z-Score 特征(相对于同时间片历史的偏离)
2. 短序列10分钟不需要30分钟预热
3. 开盘即可检测9:30 直接有特征
模型输入:
- 过去10分钟的 Z-Score 特征序列
- 特征alpha_zscore, amt_zscore, rank_zscore, momentum_3m, momentum_5m, limit_up_ratio
模型学习:
- 学习 Z-Score 序列的"正常演化模式"
- 异动 = Z-Score 序列的异常演化(重构误差大)
"""
import os
import sys
import argparse
import json
from datetime import datetime
from pathlib import Path
from typing import List, Tuple, Dict
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from torch.optim import AdamW
from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts
from tqdm import tqdm
from model import TransformerAutoencoder, AnomalyDetectionLoss, count_parameters
# 性能优化
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
try:
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
HAS_MATPLOTLIB = True
except ImportError:
HAS_MATPLOTLIB = False
# ==================== 配置 ====================
TRAIN_CONFIG = {
# 数据配置(改进!)
'seq_len': 10, # 10分钟序列不是30分钟
'stride': 2, # 步长2分钟
# 时间切分
'train_end_date': '2024-06-30',
'val_end_date': '2024-09-30',
# V2 特征Z-Score 为主)
'features': [
'alpha_zscore', # Alpha 的 Z-Score
'amt_zscore', # 成交额的 Z-Score
'rank_zscore', # 排名的 Z-Score
'momentum_3m', # 3分钟动量
'momentum_5m', # 5分钟动量
'limit_up_ratio', # 涨停占比
],
# 训练配置
'batch_size': 4096,
'epochs': 100,
'learning_rate': 3e-4,
'weight_decay': 1e-5,
'gradient_clip': 1.0,
# 早停配置
'patience': 15,
'min_delta': 1e-6,
# 模型配置(小型 LSTM
'model': {
'n_features': 6,
'hidden_dim': 32,
'latent_dim': 4,
'num_layers': 1,
'dropout': 0.2,
'bidirectional': True,
},
# 标准化配置
'clip_value': 5.0, # Z-Score 已经标准化clip 5.0 足够
# 阈值配置
'threshold_percentiles': [90, 95, 99],
}
# ==================== 数据加载 ====================
def load_data_by_date(data_dir: str, features: List[str]) -> Dict[str, pd.DataFrame]:
"""按日期加载 V2 数据"""
data_path = Path(data_dir)
parquet_files = sorted(data_path.glob("features_v2_*.parquet"))
if not parquet_files:
raise FileNotFoundError(f"未找到 V2 数据文件: {data_dir}")
print(f"找到 {len(parquet_files)} 个 V2 数据文件")
date_data = {}
for pf in tqdm(parquet_files, desc="加载数据"):
date = pf.stem.replace('features_v2_', '')
df = pd.read_parquet(pf)
required_cols = features + ['concept_id', 'timestamp']
missing_cols = [c for c in required_cols if c not in df.columns]
if missing_cols:
print(f"警告: {date} 缺少列: {missing_cols}, 跳过")
continue
date_data[date] = df
print(f"成功加载 {len(date_data)} 天的数据")
return date_data
def split_data_by_date(
date_data: Dict[str, pd.DataFrame],
train_end: str,
val_end: str
) -> Tuple[Dict[str, pd.DataFrame], Dict[str, pd.DataFrame], Dict[str, pd.DataFrame]]:
"""按日期划分数据集"""
train_data = {}
val_data = {}
test_data = {}
for date, df in date_data.items():
if date <= train_end:
train_data[date] = df
elif date <= val_end:
val_data[date] = df
else:
test_data[date] = df
print(f"数据集划分:")
print(f" 训练集: {len(train_data)} 天 (<= {train_end})")
print(f" 验证集: {len(val_data)} 天 ({train_end} ~ {val_end})")
print(f" 测试集: {len(test_data)} 天 (> {val_end})")
return train_data, val_data, test_data
def build_sequences_by_concept(
date_data: Dict[str, pd.DataFrame],
features: List[str],
seq_len: int,
stride: int
) -> np.ndarray:
"""按概念分组构建序列"""
all_dfs = []
for date, df in sorted(date_data.items()):
df = df.copy()
df['date'] = date
all_dfs.append(df)
if not all_dfs:
return np.array([])
combined = pd.concat(all_dfs, ignore_index=True)
combined = combined.sort_values(['concept_id', 'date', 'timestamp'])
all_sequences = []
grouped = combined.groupby('concept_id', sort=False)
n_concepts = len(grouped)
for concept_id, concept_df in tqdm(grouped, desc="构建序列", total=n_concepts, leave=False):
feature_data = concept_df[features].values
feature_data = np.nan_to_num(feature_data, nan=0.0, posinf=0.0, neginf=0.0)
n_points = len(feature_data)
for start in range(0, n_points - seq_len + 1, stride):
seq = feature_data[start:start + seq_len]
all_sequences.append(seq)
if not all_sequences:
return np.array([])
sequences = np.array(all_sequences)
print(f" 构建序列: {len(sequences):,} 条 (来自 {n_concepts} 个概念)")
return sequences
# ==================== 数据集 ====================
class SequenceDataset(Dataset):
def __init__(self, sequences: np.ndarray):
self.sequences = torch.FloatTensor(sequences)
def __len__(self) -> int:
return len(self.sequences)
def __getitem__(self, idx: int) -> torch.Tensor:
return self.sequences[idx]
# ==================== 训练器 ====================
class EarlyStopping:
def __init__(self, patience: int = 10, min_delta: float = 1e-6):
self.patience = patience
self.min_delta = min_delta
self.counter = 0
self.best_loss = float('inf')
self.early_stop = False
def __call__(self, val_loss: float) -> bool:
if val_loss < self.best_loss - self.min_delta:
self.best_loss = val_loss
self.counter = 0
else:
self.counter += 1
if self.counter >= self.patience:
self.early_stop = True
return self.early_stop
class Trainer:
def __init__(
self,
model: nn.Module,
train_loader: DataLoader,
val_loader: DataLoader,
config: Dict,
device: torch.device,
save_dir: str = 'ml/checkpoints_v2'
):
self.model = model.to(device)
self.train_loader = train_loader
self.val_loader = val_loader
self.config = config
self.device = device
self.save_dir = Path(save_dir)
self.save_dir.mkdir(parents=True, exist_ok=True)
self.optimizer = AdamW(
model.parameters(),
lr=config['learning_rate'],
weight_decay=config['weight_decay']
)
self.scheduler = CosineAnnealingWarmRestarts(
self.optimizer, T_0=10, T_mult=2, eta_min=1e-6
)
self.criterion = AnomalyDetectionLoss()
self.early_stopping = EarlyStopping(
patience=config['patience'],
min_delta=config['min_delta']
)
self.use_amp = torch.cuda.is_available()
self.scaler = torch.cuda.amp.GradScaler() if self.use_amp else None
if self.use_amp:
print(" ✓ 启用 AMP 混合精度训练")
self.history = {'train_loss': [], 'val_loss': [], 'learning_rate': []}
self.best_val_loss = float('inf')
def train_epoch(self) -> float:
self.model.train()
total_loss = 0.0
n_batches = 0
pbar = tqdm(self.train_loader, desc="Training", leave=False)
for batch in pbar:
batch = batch.to(self.device, non_blocking=True)
self.optimizer.zero_grad(set_to_none=True)
if self.use_amp:
with torch.cuda.amp.autocast():
output, latent = self.model(batch)
loss, _ = self.criterion(output, batch, latent)
self.scaler.scale(loss).backward()
self.scaler.unscale_(self.optimizer)
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.config['gradient_clip'])
self.scaler.step(self.optimizer)
self.scaler.update()
else:
output, latent = self.model(batch)
loss, _ = self.criterion(output, batch, latent)
loss.backward()
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.config['gradient_clip'])
self.optimizer.step()
total_loss += loss.item()
n_batches += 1
pbar.set_postfix({'loss': f"{loss.item():.4f}"})
return total_loss / n_batches
@torch.no_grad()
def validate(self) -> float:
self.model.eval()
total_loss = 0.0
n_batches = 0
for batch in self.val_loader:
batch = batch.to(self.device, non_blocking=True)
if self.use_amp:
with torch.cuda.amp.autocast():
output, latent = self.model(batch)
loss, _ = self.criterion(output, batch, latent)
else:
output, latent = self.model(batch)
loss, _ = self.criterion(output, batch, latent)
total_loss += loss.item()
n_batches += 1
return total_loss / n_batches
def save_checkpoint(self, epoch: int, val_loss: float, is_best: bool = False):
model_to_save = self.model.module if hasattr(self.model, 'module') else self.model
checkpoint = {
'epoch': epoch,
'model_state_dict': model_to_save.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
'scheduler_state_dict': self.scheduler.state_dict(),
'val_loss': val_loss,
'config': self.config,
}
torch.save(checkpoint, self.save_dir / 'last_checkpoint.pt')
if is_best:
torch.save(checkpoint, self.save_dir / 'best_model.pt')
print(f" ✓ 保存最佳模型 (val_loss: {val_loss:.6f})")
def train(self, epochs: int):
print(f"\n开始训练 ({epochs} epochs)...")
print(f"设备: {self.device}")
print(f"模型参数量: {count_parameters(self.model):,}")
for epoch in range(1, epochs + 1):
print(f"\nEpoch {epoch}/{epochs}")
train_loss = self.train_epoch()
val_loss = self.validate()
self.scheduler.step()
current_lr = self.optimizer.param_groups[0]['lr']
self.history['train_loss'].append(train_loss)
self.history['val_loss'].append(val_loss)
self.history['learning_rate'].append(current_lr)
print(f" Train Loss: {train_loss:.6f}")
print(f" Val Loss: {val_loss:.6f}")
print(f" LR: {current_lr:.2e}")
is_best = val_loss < self.best_val_loss
if is_best:
self.best_val_loss = val_loss
self.save_checkpoint(epoch, val_loss, is_best)
if self.early_stopping(val_loss):
print(f"\n早停触发!")
break
print(f"\n训练完成!最佳验证损失: {self.best_val_loss:.6f}")
self.save_history()
return self.history
def save_history(self):
history_path = self.save_dir / 'training_history.json'
with open(history_path, 'w') as f:
json.dump(self.history, f, indent=2)
print(f"训练历史已保存: {history_path}")
if HAS_MATPLOTLIB:
self.plot_training_curves()
def plot_training_curves(self):
fig, axes = plt.subplots(1, 2, figsize=(14, 5))
epochs = range(1, len(self.history['train_loss']) + 1)
ax1 = axes[0]
ax1.plot(epochs, self.history['train_loss'], 'b-', label='Train Loss', linewidth=2)
ax1.plot(epochs, self.history['val_loss'], 'r-', label='Val Loss', linewidth=2)
ax1.set_xlabel('Epoch')
ax1.set_ylabel('Loss')
ax1.set_title('Training & Validation Loss (V2)')
ax1.legend()
ax1.grid(True, alpha=0.3)
best_epoch = np.argmin(self.history['val_loss']) + 1
best_val_loss = min(self.history['val_loss'])
ax1.axvline(x=best_epoch, color='g', linestyle='--', alpha=0.7)
ax1.scatter([best_epoch], [best_val_loss], color='g', s=100, zorder=5)
ax2 = axes[1]
ax2.plot(epochs, self.history['learning_rate'], 'g-', linewidth=2)
ax2.set_xlabel('Epoch')
ax2.set_ylabel('Learning Rate')
ax2.set_title('Learning Rate Schedule')
ax2.set_yscale('log')
ax2.grid(True, alpha=0.3)
plt.tight_layout()
plt.savefig(self.save_dir / 'training_curves.png', dpi=150, bbox_inches='tight')
plt.close()
print(f"训练曲线已保存")
# ==================== 阈值计算 ====================
@torch.no_grad()
def compute_thresholds(
model: nn.Module,
data_loader: DataLoader,
device: torch.device,
percentiles: List[float] = [90, 95, 99]
) -> Dict[str, float]:
"""在验证集上计算阈值"""
model.eval()
all_errors = []
print("计算异动阈值...")
for batch in tqdm(data_loader, desc="Computing thresholds"):
batch = batch.to(device)
errors = model.compute_reconstruction_error(batch, reduction='none')
seq_errors = errors[:, -1] # 最后一个时刻
all_errors.append(seq_errors.cpu().numpy())
all_errors = np.concatenate(all_errors)
thresholds = {}
for p in percentiles:
threshold = np.percentile(all_errors, p)
thresholds[f'p{p}'] = float(threshold)
print(f" P{p}: {threshold:.6f}")
thresholds['mean'] = float(np.mean(all_errors))
thresholds['std'] = float(np.std(all_errors))
thresholds['median'] = float(np.median(all_errors))
return thresholds
# ==================== 主函数 ====================
def main():
parser = argparse.ArgumentParser(description='训练 V2 模型')
parser.add_argument('--data_dir', type=str, default='ml/data_v2', help='V2 数据目录')
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--batch_size', type=int, default=4096)
parser.add_argument('--lr', type=float, default=3e-4)
parser.add_argument('--device', type=str, default='auto')
parser.add_argument('--save_dir', type=str, default='ml/checkpoints_v2')
parser.add_argument('--train_end', type=str, default='2024-06-30')
parser.add_argument('--val_end', type=str, default='2024-09-30')
parser.add_argument('--seq_len', type=int, default=10, help='序列长度(分钟)')
args = parser.parse_args()
config = TRAIN_CONFIG.copy()
config['batch_size'] = args.batch_size
config['epochs'] = args.epochs
config['learning_rate'] = args.lr
config['train_end_date'] = args.train_end
config['val_end_date'] = args.val_end
config['seq_len'] = args.seq_len
if args.device == 'auto':
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
else:
device = torch.device(args.device)
print("=" * 60)
print("概念异动检测模型训练 V2Z-Score 特征)")
print("=" * 60)
print(f"数据目录: {args.data_dir}")
print(f"设备: {device}")
print(f"序列长度: {config['seq_len']} 分钟")
print(f"批次大小: {config['batch_size']}")
print(f"特征: {config['features']}")
print("=" * 60)
# 1. 加载数据
print("\n[1/6] 加载 V2 数据...")
date_data = load_data_by_date(args.data_dir, config['features'])
# 2. 划分数据集
print("\n[2/6] 划分数据集...")
train_data, val_data, test_data = split_data_by_date(
date_data, config['train_end_date'], config['val_end_date']
)
# 3. 构建序列
print("\n[3/6] 构建序列...")
print("训练集:")
train_sequences = build_sequences_by_concept(
train_data, config['features'], config['seq_len'], config['stride']
)
print("验证集:")
val_sequences = build_sequences_by_concept(
val_data, config['features'], config['seq_len'], config['stride']
)
if len(train_sequences) == 0:
print("错误: 训练集为空!")
return
# 4. 预处理
print("\n[4/6] 数据预处理...")
clip_value = config['clip_value']
print(f" Z-Score 特征已标准化,截断: ±{clip_value}")
train_sequences = np.clip(train_sequences, -clip_value, clip_value)
if len(val_sequences) > 0:
val_sequences = np.clip(val_sequences, -clip_value, clip_value)
# 保存配置
save_dir = Path(args.save_dir)
save_dir.mkdir(parents=True, exist_ok=True)
with open(save_dir / 'config.json', 'w') as f:
json.dump(config, f, indent=2)
# 5. 创建数据加载器
print("\n[5/6] 创建数据加载器...")
train_dataset = SequenceDataset(train_sequences)
val_dataset = SequenceDataset(val_sequences) if len(val_sequences) > 0 else None
print(f" 训练序列: {len(train_dataset):,}")
print(f" 验证序列: {len(val_dataset) if val_dataset else 0:,}")
n_gpus = torch.cuda.device_count() if torch.cuda.is_available() else 1
num_workers = min(32, 8 * n_gpus) if sys.platform != 'win32' else 0
train_loader = DataLoader(
train_dataset,
batch_size=config['batch_size'],
shuffle=True,
num_workers=num_workers,
pin_memory=True,
prefetch_factor=4 if num_workers > 0 else None,
persistent_workers=True if num_workers > 0 else False,
drop_last=True
)
val_loader = DataLoader(
val_dataset,
batch_size=config['batch_size'] * 2,
shuffle=False,
num_workers=num_workers,
pin_memory=True,
) if val_dataset else None
# 6. 训练
print("\n[6/6] 训练模型...")
model = TransformerAutoencoder(**config['model'])
if torch.cuda.device_count() > 1:
print(f" 使用 {torch.cuda.device_count()} 张 GPU 并行训练")
model = nn.DataParallel(model)
if val_loader is None:
print("警告: 验证集为空,使用训练集的 10% 作为验证")
split_idx = int(len(train_dataset) * 0.9)
train_subset = torch.utils.data.Subset(train_dataset, range(split_idx))
val_subset = torch.utils.data.Subset(train_dataset, range(split_idx, len(train_dataset)))
train_loader = DataLoader(train_subset, batch_size=config['batch_size'], shuffle=True, num_workers=num_workers, pin_memory=True)
val_loader = DataLoader(val_subset, batch_size=config['batch_size'], shuffle=False, num_workers=num_workers, pin_memory=True)
trainer = Trainer(
model=model,
train_loader=train_loader,
val_loader=val_loader,
config=config,
device=device,
save_dir=args.save_dir
)
trainer.train(config['epochs'])
# 计算阈值
print("\n[额外] 计算异动阈值...")
best_checkpoint = torch.load(save_dir / 'best_model.pt', map_location=device)
# 创建新的单 GPU 模型用于计算阈值(避免 DataParallel 问题)
threshold_model = TransformerAutoencoder(**config['model'])
threshold_model.load_state_dict(best_checkpoint['model_state_dict'])
threshold_model.to(device)
threshold_model.eval()
thresholds = compute_thresholds(threshold_model, val_loader, device, config['threshold_percentiles'])
with open(save_dir / 'thresholds.json', 'w') as f:
json.dump(thresholds, f, indent=2)
print("\n" + "=" * 60)
print("训练完成!")
print(f"模型保存位置: {args.save_dir}")
print("=" * 60)
if __name__ == "__main__":
main()

132
ml/update_baseline.py Normal file
View File

@@ -0,0 +1,132 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
每日盘后运行:更新滚动基线
使用方法:
python ml/update_baseline.py
建议加入 crontab每天 15:30 后运行:
30 15 * * 1-5 cd /path/to/project && python ml/update_baseline.py
"""
import os
import sys
import pickle
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
from pathlib import Path
from tqdm import tqdm
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from ml.prepare_data_v2 import (
get_all_concepts, get_trading_days, compute_raw_concept_features,
init_process_connections, CONFIG, RAW_CACHE_DIR, BASELINE_DIR
)
def update_rolling_baseline(baseline_days: int = 20):
"""
更新滚动基线(用于实盘检测)
基线 = 最近 N 个交易日每个时间片的统计量
"""
print("=" * 60)
print("更新滚动基线(用于实盘)")
print("=" * 60)
# 初始化连接
init_process_connections()
# 获取概念列表
concepts = get_all_concepts()
all_stocks = list(set(s for c in concepts for s in c['stocks']))
# 获取最近的交易日
today = datetime.now().strftime('%Y-%m-%d')
start_date = (datetime.now() - timedelta(days=60)).strftime('%Y-%m-%d') # 多取一些
trading_days = get_trading_days(start_date, today)
if len(trading_days) < baseline_days:
print(f"错误:交易日不足 {baseline_days}")
return
# 只取最近 N 天
recent_days = trading_days[-baseline_days:]
print(f"使用 {len(recent_days)} 天数据: {recent_days[0]} ~ {recent_days[-1]}")
# 加载原始数据
all_data = []
for trade_date in tqdm(recent_days, desc="加载数据"):
cache_file = os.path.join(RAW_CACHE_DIR, f'raw_{trade_date}.parquet')
if os.path.exists(cache_file):
df = pd.read_parquet(cache_file)
else:
df = compute_raw_concept_features(trade_date, concepts, all_stocks)
if not df.empty:
all_data.append(df)
if not all_data:
print("错误:无数据")
return
combined = pd.concat(all_data, ignore_index=True)
print(f"总数据量: {len(combined):,}")
# 按概念计算基线
baselines = {}
for concept_id, group in tqdm(combined.groupby('concept_id'), desc="计算基线"):
baseline_dict = {}
for time_slot, slot_group in group.groupby('time_slot'):
if len(slot_group) < CONFIG['min_baseline_samples']:
continue
alpha_std = slot_group['alpha'].std()
amt_std = slot_group['total_amt'].std()
rank_std = slot_group['rank_pct'].std()
baseline_dict[time_slot] = {
'alpha_mean': float(slot_group['alpha'].mean()),
'alpha_std': float(max(alpha_std if pd.notna(alpha_std) else 1.0, 0.1)),
'amt_mean': float(slot_group['total_amt'].mean()),
'amt_std': float(max(amt_std if pd.notna(amt_std) else slot_group['total_amt'].mean() * 0.5, 1.0)),
'rank_mean': float(slot_group['rank_pct'].mean()),
'rank_std': float(max(rank_std if pd.notna(rank_std) else 0.2, 0.05)),
'sample_count': len(slot_group),
}
if baseline_dict:
baselines[concept_id] = baseline_dict
print(f"计算了 {len(baselines)} 个概念的基线")
# 保存
os.makedirs(BASELINE_DIR, exist_ok=True)
baseline_file = os.path.join(BASELINE_DIR, 'realtime_baseline.pkl')
with open(baseline_file, 'wb') as f:
pickle.dump({
'baselines': baselines,
'update_time': datetime.now().isoformat(),
'date_range': [recent_days[0], recent_days[-1]],
'baseline_days': baseline_days,
}, f)
print(f"基线已保存: {baseline_file}")
print("=" * 60)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--days', type=int, default=20, help='基线天数')
args = parser.parse_args()
update_rolling_baseline(args.days)