Files
vf_react/mcp_server.py

2384 lines
85 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
MCP Server for Financial Data Search
基于FastAPI的MCP服务端整合多个金融数据搜索API
支持LLM调用和Web聊天功能
"""
from fastapi import FastAPI, HTTPException, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, StreamingResponse
from pydantic import BaseModel, Field
from typing import List, Dict, Any, Optional, Literal, AsyncGenerator
from datetime import datetime, date
import logging
import httpx
from enum import Enum
import mcp_database as db
from openai import OpenAI
import json
import asyncio
import uuid
from mcp_elasticsearch import es_client
# 配置日志
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# 创建FastAPI应用
app = FastAPI(
title="Financial Data MCP Server",
description="Model Context Protocol server for financial data search and analysis",
version="1.0.0"
)
# 添加CORS中间件
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# ==================== 配置 ====================
class ServiceEndpoints:
"""API服务端点配置"""
NEWS_API = "http://222.128.1.157:21891" # 新闻API
ROADSHOW_API = "http://222.128.1.157:19800" # 路演API
CONCEPT_API = "http://222.128.1.157:16801" # 概念API本地
STOCK_ANALYSIS_API = "http://222.128.1.157:8811" # 涨停分析+研报API
MAIN_APP_API = "http://127.0.0.1:5001" # 主应用API自选股、自选事件等
# HTTP客户端配置
HTTP_CLIENT = httpx.AsyncClient(timeout=60.0)
# ==================== Agent系统配置 ====================
# Kimi 配置 - 用于计划制定和深度推理
KIMI_CONFIG = {
"api_key": "sk-TzB4VYJfCoXGcGrGMiewukVRzjuDsbVCkaZXi2LvkS8s60E5",
"base_url": "https://api.moonshot.cn/v1",
"model": "kimi-k2-thinking", # 思考模型
}
# DeepMoney 配置 - 用于新闻总结
DEEPMONEY_CONFIG = {
"api_key": "", # 空值
"base_url": "http://111.62.35.50:8000/v1",
"model": "deepmoney",
}
# ==================== MCP协议数据模型 ====================
class ToolParameter(BaseModel):
"""工具参数定义"""
type: str
description: str
enum: Optional[List[str]] = None
default: Optional[Any] = None
class ToolDefinition(BaseModel):
"""工具定义"""
name: str
description: str
parameters: Dict[str, Any] # 支持完整的 JSON Schema 格式
class ToolCallRequest(BaseModel):
"""工具调用请求"""
tool: str
arguments: Dict[str, Any] = {}
class ToolCallResponse(BaseModel):
"""工具调用响应"""
success: bool
data: Optional[Any] = None
error: Optional[str] = None
metadata: Optional[Dict[str, Any]] = None
# ==================== Agent系统数据模型 ====================
class ToolCall(BaseModel):
"""工具调用"""
tool: str
arguments: Dict[str, Any]
reason: str
class ExecutionPlan(BaseModel):
"""执行计划"""
goal: str
steps: List[ToolCall]
reasoning: str
class StepResult(BaseModel):
"""单步执行结果"""
step_index: int
tool: str
arguments: Dict[str, Any]
status: Literal["success", "failed", "skipped"]
result: Optional[Any] = None
error: Optional[str] = None
execution_time: float = 0
class AgentResponse(BaseModel):
"""Agent响应"""
success: bool
message: str
plan: Optional[ExecutionPlan] = None
step_results: List[StepResult] = []
final_summary: Optional[str] = None
metadata: Optional[Dict[str, Any]] = None
class ConversationMessage(BaseModel):
"""对话历史消息"""
isUser: bool
content: str
class AgentChatRequest(BaseModel):
"""聊天请求"""
message: str
conversation_history: List[ConversationMessage] = []
user_id: Optional[str] = None # 用户ID
user_nickname: Optional[str] = None # 用户昵称
user_avatar: Optional[str] = None # 用户头像URL
subscription_type: Optional[str] = None # 用户订阅类型free/pro/max
session_id: Optional[str] = None # 会话ID如果为空则创建新会话
# ==================== MCP工具定义 ====================
TOOLS: List[ToolDefinition] = [
ToolDefinition(
name="search_news",
description="搜索全球新闻,支持关键词搜索和日期过滤。适用于查找国际新闻、行业动态等。",
parameters={
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "搜索关键词,例如:'人工智能''新能源汽车'"
},
"source": {
"type": "string",
"description": "新闻来源筛选,可选"
},
"start_date": {
"type": "string",
"description": "开始日期格式YYYY-MM-DD"
},
"end_date": {
"type": "string",
"description": "结束日期格式YYYY-MM-DD"
},
"top_k": {
"type": "integer",
"description": "返回结果数量默认20",
"default": 20
}
},
"required": ["query"]
}
),
ToolDefinition(
name="search_china_news",
description="搜索中国新闻使用KNN语义搜索。支持精确匹配模式适合查找股票、公司相关新闻。",
parameters={
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "搜索关键词"
},
"exact_match": {
"type": "boolean",
"description": "是否精确匹配用于股票代码、公司名称等默认false",
"default": False
},
"source": {
"type": "string",
"description": "新闻来源筛选"
},
"start_date": {
"type": "string",
"description": "开始日期格式YYYY-MM-DD"
},
"end_date": {
"type": "string",
"description": "结束日期格式YYYY-MM-DD"
},
"top_k": {
"type": "integer",
"description": "返回结果数量默认20",
"default": 20
}
},
"required": ["query"]
}
),
ToolDefinition(
name="search_medical_news",
description="搜索医疗健康类新闻,包括医药、医疗设备、生物技术等领域。",
parameters={
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "搜索关键词"
},
"source": {
"type": "string",
"description": "新闻来源"
},
"start_date": {
"type": "string",
"description": "开始日期格式YYYY-MM-DD"
},
"end_date": {
"type": "string",
"description": "结束日期格式YYYY-MM-DD"
},
"top_k": {
"type": "integer",
"description": "返回结果数量",
"default": 10
}
},
"required": ["query"]
}
),
ToolDefinition(
name="search_roadshows",
description="搜索上市公司路演、投资者交流活动记录。可按公司代码、日期范围搜索。",
parameters={
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "搜索关键词,可以是公司名称、主题等"
},
"company_code": {
"type": "string",
"description": "公司股票代码,例如:'600519.SH'"
},
"start_date": {
"type": "string",
"description": "开始日期格式YYYY-MM-DD 或 YYYY-MM-DD HH:MM:SS"
},
"end_date": {
"type": "string",
"description": "结束日期格式YYYY-MM-DD 或 YYYY-MM-DD HH:MM:SS"
},
"size": {
"type": "integer",
"description": "返回结果数量",
"default": 10
}
},
"required": ["query"]
}
),
ToolDefinition(
name="search_concepts",
description="搜索股票概念板块,支持按涨跌幅、股票数量排序。返回概念详情及相关股票列表。",
parameters={
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "搜索关键词,例如:'新能源''人工智能'"
},
"size": {
"type": "integer",
"description": "每页结果数量",
"default": 10
},
"page": {
"type": "integer",
"description": "页码",
"default": 1
},
"sort_by": {
"type": "string",
"description": "排序方式change_pct(涨跌幅), _score(相关度), stock_count(股票数), concept_name(名称)",
"enum": ["change_pct", "_score", "stock_count", "concept_name"],
"default": "change_pct"
},
"trade_date": {
"type": "string",
"description": "交易日期格式YYYY-MM-DD默认最新"
}
},
"required": ["query"]
}
),
ToolDefinition(
name="get_concept_details",
description="根据概念ID获取详细信息包括描述、相关股票、涨跌幅数据等。",
parameters={
"type": "object",
"properties": {
"concept_id": {
"type": "string",
"description": "概念ID"
},
"trade_date": {
"type": "string",
"description": "交易日期格式YYYY-MM-DD"
}
},
"required": ["concept_id"]
}
),
ToolDefinition(
name="get_stock_concepts",
description="查询指定股票的所有相关概念板块,包括涨跌幅信息。",
parameters={
"type": "object",
"properties": {
"stock_code": {
"type": "string",
"description": "股票代码或名称"
},
"size": {
"type": "integer",
"description": "返回概念数量",
"default": 50
},
"sort_by": {
"type": "string",
"description": "排序方式",
"enum": ["stock_count", "concept_name", "recent"],
"default": "stock_count"
},
"trade_date": {
"type": "string",
"description": "交易日期格式YYYY-MM-DD"
}
},
"required": ["stock_code"]
}
),
ToolDefinition(
name="get_concept_statistics",
description="获取概念板块统计数据,包括涨幅榜、跌幅榜、活跃榜、波动榜、连涨榜。",
parameters={
"type": "object",
"properties": {
"days": {
"type": "integer",
"description": "统计天数与start_date/end_date互斥"
},
"start_date": {
"type": "string",
"description": "开始日期格式YYYY-MM-DD"
},
"end_date": {
"type": "string",
"description": "结束日期格式YYYY-MM-DD"
},
"min_stock_count": {
"type": "integer",
"description": "最少股票数量过滤",
"default": 3
}
},
"required": []
}
),
ToolDefinition(
name="search_limit_up_stocks",
description="搜索涨停股票,支持按日期、关键词、板块等条件搜索。包括混合语义搜索。",
parameters={
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "搜索关键词(涨停原因、公司名称等)"
},
"date": {
"type": "string",
"description": "日期格式YYYYMMDD"
},
"mode": {
"type": "string",
"description": "搜索模式",
"enum": ["hybrid", "text", "vector"],
"default": "hybrid"
},
"sectors": {
"type": "array",
"items": {"type": "string"},
"description": "板块筛选"
},
"page_size": {
"type": "integer",
"description": "每页结果数",
"default": 20
}
},
"required": ["query"]
}
),
ToolDefinition(
name="get_daily_stock_analysis",
description="获取指定日期的涨停股票分析,包括板块分析、词云、趋势图表等。",
parameters={
"type": "object",
"properties": {
"date": {
"type": "string",
"description": "日期格式YYYYMMDD"
}
},
"required": ["date"]
}
),
ToolDefinition(
name="search_research_reports",
description="搜索研究报告,支持文本和语义混合搜索。可按作者、证券、日期等筛选。",
parameters={
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "搜索关键词"
},
"mode": {
"type": "string",
"description": "搜索模式",
"enum": ["hybrid", "text", "vector"],
"default": "hybrid"
},
"exact_match": {
"type": "string",
"description": "是否精确匹配0=模糊1=精确",
"enum": ["0", "1"],
"default": "0"
},
"security_code": {
"type": "string",
"description": "证券代码筛选"
},
"start_date": {
"type": "string",
"description": "开始日期格式YYYY-MM-DD"
},
"end_date": {
"type": "string",
"description": "结束日期格式YYYY-MM-DD"
},
"size": {
"type": "integer",
"description": "返回结果数量",
"default": 10
}
},
"required": ["query"]
}
),
ToolDefinition(
name="get_stock_basic_info",
description="获取股票基本信息,包括公司名称、行业、地址、主营业务、高管等基础数据。",
parameters={
"type": "object",
"properties": {
"seccode": {
"type": "string",
"description": "股票代码例如600519"
}
},
"required": ["seccode"]
}
),
ToolDefinition(
name="get_stock_financial_index",
description="获取股票财务指标,包括每股收益、净资产收益率、营收增长率等关键财务数据。",
parameters={
"type": "object",
"properties": {
"seccode": {
"type": "string",
"description": "股票代码"
},
"start_date": {
"type": "string",
"description": "开始日期格式YYYY-MM-DD"
},
"end_date": {
"type": "string",
"description": "结束日期格式YYYY-MM-DD"
},
"limit": {
"type": "integer",
"description": "返回条数默认10",
"default": 10
}
},
"required": ["seccode"]
}
),
ToolDefinition(
name="get_stock_trade_data",
description="获取股票交易数据,包括价格、成交量、涨跌幅、换手率等日线行情数据。",
parameters={
"type": "object",
"properties": {
"seccode": {
"type": "string",
"description": "股票代码"
},
"start_date": {
"type": "string",
"description": "开始日期格式YYYY-MM-DD"
},
"end_date": {
"type": "string",
"description": "结束日期格式YYYY-MM-DD"
},
"limit": {
"type": "integer",
"description": "返回条数默认30",
"default": 30
}
},
"required": ["seccode"]
}
),
ToolDefinition(
name="get_stock_balance_sheet",
description="获取股票资产负债表,包括资产、负债、所有者权益等财务状况数据。",
parameters={
"type": "object",
"properties": {
"seccode": {
"type": "string",
"description": "股票代码"
},
"start_date": {
"type": "string",
"description": "开始日期格式YYYY-MM-DD"
},
"end_date": {
"type": "string",
"description": "结束日期格式YYYY-MM-DD"
},
"limit": {
"type": "integer",
"description": "返回条数默认8",
"default": 8
}
},
"required": ["seccode"]
}
),
ToolDefinition(
name="get_stock_cashflow",
description="获取股票现金流量表,包括经营、投资、筹资活动现金流数据。",
parameters={
"type": "object",
"properties": {
"seccode": {
"type": "string",
"description": "股票代码"
},
"start_date": {
"type": "string",
"description": "开始日期格式YYYY-MM-DD"
},
"end_date": {
"type": "string",
"description": "结束日期格式YYYY-MM-DD"
},
"limit": {
"type": "integer",
"description": "返回条数默认8",
"default": 8
}
},
"required": ["seccode"]
}
),
ToolDefinition(
name="search_stocks_by_criteria",
description="按条件搜索股票,支持按行业、地区、市值等条件筛选股票列表。",
parameters={
"type": "object",
"properties": {
"industry": {
"type": "string",
"description": "行业名称,支持模糊匹配"
},
"province": {
"type": "string",
"description": "省份名称"
},
"min_market_cap": {
"type": "number",
"description": "最小市值(亿元)"
},
"max_market_cap": {
"type": "number",
"description": "最大市值(亿元)"
},
"limit": {
"type": "integer",
"description": "返回条数默认50",
"default": 50
}
},
"required": []
}
),
ToolDefinition(
name="get_stock_comparison",
description="股票对比分析,支持多只股票的财务指标或交易数据对比。",
parameters={
"type": "object",
"properties": {
"seccodes": {
"type": "array",
"items": {"type": "string"},
"description": "股票代码列表至少2个"
},
"metric": {
"type": "string",
"description": "对比指标类型",
"enum": ["financial", "trade"],
"default": "financial"
}
},
"required": ["seccodes"]
}
),
ToolDefinition(
name="get_user_watchlist",
description="获取用户的自选股列表及实时行情数据。返回用户关注的股票及其当前价格、涨跌幅等信息。",
parameters={
"type": "object",
"properties": {
"user_id": {
"type": "string",
"description": "用户ID可选如果不提供则使用当前会话用户"
}
},
"required": []
}
),
ToolDefinition(
name="get_user_following_events",
description="获取用户关注的事件列表。返回用户关注的热点事件及其基本信息(标题、类型、热度、关注人数等)。",
parameters={
"type": "object",
"properties": {
"user_id": {
"type": "string",
"description": "用户ID可选如果不提供则使用当前会话用户"
}
},
"required": []
}
),
]
# ==================== MCP协议端点 ====================
@app.get("/")
async def root():
"""服务根端点"""
return {
"name": "Financial Data MCP Server",
"version": "1.0.0",
"protocol": "MCP",
"description": "Model Context Protocol server for financial data search and analysis"
}
@app.get("/tools")
async def list_tools():
"""列出所有可用工具"""
return {
"tools": [tool.dict() for tool in TOOLS]
}
@app.get("/tools/{tool_name}")
async def get_tool(tool_name: str):
"""获取特定工具的定义"""
tool = next((t for t in TOOLS if t.name == tool_name), None)
if not tool:
raise HTTPException(status_code=404, detail=f"Tool '{tool_name}' not found")
return tool.dict()
@app.post("/tools/call")
async def call_tool(request: ToolCallRequest):
"""调用工具"""
logger.info(f"Tool call: {request.tool} with args: {request.arguments}")
try:
# 路由到对应的工具处理函数
handler = TOOL_HANDLERS.get(request.tool)
if not handler:
raise HTTPException(status_code=404, detail=f"Tool '{request.tool}' not found")
result = await handler(request.arguments)
return ToolCallResponse(
success=True,
data=result,
metadata={
"tool": request.tool,
"timestamp": datetime.now().isoformat()
}
)
except Exception as e:
logger.error(f"Tool call error: {str(e)}", exc_info=True)
return ToolCallResponse(
success=False,
error=str(e),
metadata={
"tool": request.tool,
"timestamp": datetime.now().isoformat()
}
)
# ==================== 工具处理函数 ====================
async def handle_search_news(args: Dict[str, Any]) -> Any:
"""处理新闻搜索"""
params = {
"query": args.get("query"),
"source": args.get("source"),
"start_date": args.get("start_date"),
"end_date": args.get("end_date"),
"top_k": args.get("top_k", 20)
}
# 移除None值
params = {k: v for k, v in params.items() if v is not None}
response = await HTTP_CLIENT.get(f"{ServiceEndpoints.NEWS_API}/search_news", params=params)
response.raise_for_status()
return response.json()
async def handle_search_china_news(args: Dict[str, Any]) -> Any:
"""处理中国新闻搜索"""
params = {
"query": args.get("query"),
"exact_match": args.get("exact_match", False),
"source": args.get("source"),
"start_date": args.get("start_date"),
"end_date": args.get("end_date"),
"top_k": args.get("top_k", 20)
}
params = {k: v for k, v in params.items() if v is not None}
response = await HTTP_CLIENT.get(f"{ServiceEndpoints.NEWS_API}/search_china_news", params=params)
response.raise_for_status()
return response.json()
async def handle_search_medical_news(args: Dict[str, Any]) -> Any:
"""处理医疗新闻搜索"""
params = {
"query": args["query"],
"source": args.get("source"),
"start_date": args.get("start_date"),
"end_date": args.get("end_date"),
"top_k": args.get("top_k", 10)
}
params = {k: v for k, v in params.items() if v is not None}
response = await HTTP_CLIENT.get(f"{ServiceEndpoints.NEWS_API}/search_medical_news", params=params)
response.raise_for_status()
return response.json()
async def handle_search_roadshows(args: Dict[str, Any]) -> Any:
"""处理路演搜索"""
params = {
"query": args["query"],
"company_code": args.get("company_code"),
"start_date": args.get("start_date"),
"end_date": args.get("end_date"),
"size": args.get("size", 10)
}
params = {k: v for k, v in params.items() if v is not None}
response = await HTTP_CLIENT.get(f"{ServiceEndpoints.ROADSHOW_API}/search", params=params)
response.raise_for_status()
return response.json()
async def handle_search_concepts(args: Dict[str, Any]) -> Any:
"""处理概念搜索"""
payload = {
"query": args["query"],
"size": args.get("size", 10),
"page": args.get("page", 1),
"search_size": 100,
"sort_by": args.get("sort_by", "change_pct"),
"use_knn": True
}
if args.get("trade_date"):
payload["trade_date"] = args["trade_date"]
response = await HTTP_CLIENT.post(f"{ServiceEndpoints.CONCEPT_API}/search", json=payload)
response.raise_for_status()
return response.json()
async def handle_get_concept_details(args: Dict[str, Any]) -> Any:
"""处理概念详情获取"""
concept_id = args["concept_id"]
params = {}
if args.get("trade_date"):
params["trade_date"] = args["trade_date"]
response = await HTTP_CLIENT.get(
f"{ServiceEndpoints.CONCEPT_API}/concept/{concept_id}",
params=params
)
response.raise_for_status()
return response.json()
async def handle_get_stock_concepts(args: Dict[str, Any]) -> Any:
"""处理股票概念获取"""
stock_code = args["stock_code"]
params = {
"size": args.get("size", 50),
"sort_by": args.get("sort_by", "stock_count"),
"include_description": True
}
if args.get("trade_date"):
params["trade_date"] = args["trade_date"]
response = await HTTP_CLIENT.get(
f"{ServiceEndpoints.CONCEPT_API}/stock/{stock_code}/concepts",
params=params
)
response.raise_for_status()
return response.json()
async def handle_get_concept_statistics(args: Dict[str, Any]) -> Any:
"""处理概念统计获取"""
params = {}
if args.get("days"):
params["days"] = args["days"]
if args.get("start_date"):
params["start_date"] = args["start_date"]
if args.get("end_date"):
params["end_date"] = args["end_date"]
if args.get("min_stock_count"):
params["min_stock_count"] = args["min_stock_count"]
response = await HTTP_CLIENT.get(f"{ServiceEndpoints.CONCEPT_API}/statistics", params=params)
response.raise_for_status()
return response.json()
async def handle_search_limit_up_stocks(args: Dict[str, Any]) -> Any:
"""处理涨停股票搜索"""
payload = {
"query": args["query"],
"mode": args.get("mode", "hybrid"),
"page_size": args.get("page_size", 20)
}
if args.get("date"):
payload["date"] = args["date"]
if args.get("sectors"):
payload["sectors"] = args["sectors"]
response = await HTTP_CLIENT.post(
f"{ServiceEndpoints.STOCK_ANALYSIS_API}/api/v1/stocks/search/hybrid",
json=payload
)
response.raise_for_status()
return response.json()
async def handle_get_daily_stock_analysis(args: Dict[str, Any]) -> Any:
"""处理每日股票分析获取"""
date = args["date"]
response = await HTTP_CLIENT.get(
f"{ServiceEndpoints.STOCK_ANALYSIS_API}/api/v1/analysis/daily/{date}"
)
response.raise_for_status()
return response.json()
async def handle_search_research_reports(args: Dict[str, Any]) -> Any:
"""处理研报搜索"""
params = {
"query": args["query"],
"mode": args.get("mode", "hybrid"),
"exact_match": args.get("exact_match", "0"),
"size": args.get("size", 10)
}
if args.get("security_code"):
params["security_code"] = args["security_code"]
if args.get("start_date"):
params["start_date"] = args["start_date"]
if args.get("end_date"):
params["end_date"] = args["end_date"]
response = await HTTP_CLIENT.get(f"{ServiceEndpoints.STOCK_ANALYSIS_API}/search", params=params)
response.raise_for_status()
return response.json()
async def handle_get_stock_basic_info(args: Dict[str, Any]) -> Any:
"""处理股票基本信息查询"""
seccode = args["seccode"]
result = await db.get_stock_basic_info(seccode)
if result:
return {"success": True, "data": result}
else:
return {"success": False, "error": f"未找到股票代码 {seccode} 的信息"}
async def handle_get_stock_financial_index(args: Dict[str, Any]) -> Any:
"""处理股票财务指标查询"""
seccode = args["seccode"]
start_date = args.get("start_date")
end_date = args.get("end_date")
limit = args.get("limit", 10)
result = await db.get_stock_financial_index(seccode, start_date, end_date, limit)
return {
"success": True,
"data": result,
"count": len(result)
}
async def handle_get_stock_trade_data(args: Dict[str, Any]) -> Any:
"""处理股票交易数据查询"""
seccode = args["seccode"]
start_date = args.get("start_date")
end_date = args.get("end_date")
limit = args.get("limit", 30)
result = await db.get_stock_trade_data(seccode, start_date, end_date, limit)
return {
"success": True,
"data": result,
"count": len(result)
}
async def handle_get_stock_balance_sheet(args: Dict[str, Any]) -> Any:
"""处理资产负债表查询"""
seccode = args["seccode"]
start_date = args.get("start_date")
end_date = args.get("end_date")
limit = args.get("limit", 8)
result = await db.get_stock_balance_sheet(seccode, start_date, end_date, limit)
return {
"success": True,
"data": result,
"count": len(result)
}
async def handle_get_stock_cashflow(args: Dict[str, Any]) -> Any:
"""处理现金流量表查询"""
seccode = args["seccode"]
start_date = args.get("start_date")
end_date = args.get("end_date")
limit = args.get("limit", 8)
result = await db.get_stock_cashflow(seccode, start_date, end_date, limit)
return {
"success": True,
"data": result,
"count": len(result)
}
async def handle_search_stocks_by_criteria(args: Dict[str, Any]) -> Any:
"""处理按条件搜索股票"""
industry = args.get("industry")
province = args.get("province")
min_market_cap = args.get("min_market_cap")
max_market_cap = args.get("max_market_cap")
limit = args.get("limit", 50)
result = await db.search_stocks_by_criteria(
industry, province, min_market_cap, max_market_cap, limit
)
return {
"success": True,
"data": result,
"count": len(result)
}
async def handle_get_stock_comparison(args: Dict[str, Any]) -> Any:
"""处理股票对比分析"""
seccodes = args["seccodes"]
metric = args.get("metric", "financial")
result = await db.get_stock_comparison(seccodes, metric)
return {
"success": True,
"data": result
}
async def handle_get_user_watchlist(args: Dict[str, Any]) -> Any:
"""获取用户自选股列表及实时行情"""
try:
# 从 agent 实例获取 cookies如果可用
cookies = getattr(agent, 'cookies', {})
# 调用主应用的自选股API
response = await HTTP_CLIENT.get(
f"{ServiceEndpoints.MAIN_APP_API}/api/account/watchlist/realtime",
headers={
"Content-Type": "application/json"
},
cookies=cookies # 传递用户的 session cookie
)
if response.status_code == 200:
data = response.json()
logger.info(f"[Watchlist] 成功获取 {len(data.get('data', []))} 只自选股")
return data
elif response.status_code == 401:
logger.warning("[Watchlist] 未登录或会话已过期")
return {
"success": False,
"error": "未登录或会话已过期",
"data": []
}
else:
logger.error(f"[Watchlist] 获取失败: {response.status_code}")
return {
"success": False,
"error": f"获取自选股失败: {response.status_code}",
"data": []
}
except Exception as e:
logger.error(f"[Watchlist] 获取用户自选股失败: {e}", exc_info=True)
return {
"success": False,
"error": str(e),
"data": []
}
async def handle_get_user_following_events(args: Dict[str, Any]) -> Any:
"""获取用户关注的事件列表"""
try:
# 从 agent 实例获取 cookies如果可用
cookies = getattr(agent, 'cookies', {})
# 调用主应用的关注事件API
response = await HTTP_CLIENT.get(
f"{ServiceEndpoints.MAIN_APP_API}/api/account/events/following",
headers={
"Content-Type": "application/json"
},
cookies=cookies # 传递用户的 session cookie
)
if response.status_code == 200:
data = response.json()
logger.info(f"[FollowingEvents] 成功获取 {len(data.get('data', []))} 个关注事件")
return data
elif response.status_code == 401:
logger.warning("[FollowingEvents] 未登录或会话已过期")
return {
"success": False,
"error": "未登录或会话已过期",
"data": []
}
else:
logger.error(f"[FollowingEvents] 获取失败: {response.status_code}")
return {
"success": False,
"error": f"获取关注事件失败: {response.status_code}",
"data": []
}
except Exception as e:
logger.error(f"[FollowingEvents] 获取用户关注事件失败: {e}", exc_info=True)
return {
"success": False,
"error": str(e),
"data": []
}
# 工具处理函数映射
TOOL_HANDLERS = {
"search_news": handle_search_news,
"search_china_news": handle_search_china_news,
"search_medical_news": handle_search_medical_news,
"search_roadshows": handle_search_roadshows,
"search_concepts": handle_search_concepts,
"get_concept_details": handle_get_concept_details,
"get_stock_concepts": handle_get_stock_concepts,
"get_concept_statistics": handle_get_concept_statistics,
"search_limit_up_stocks": handle_search_limit_up_stocks,
"get_daily_stock_analysis": handle_get_daily_stock_analysis,
"search_research_reports": handle_search_research_reports,
"get_stock_basic_info": handle_get_stock_basic_info,
"get_stock_financial_index": handle_get_stock_financial_index,
"get_stock_trade_data": handle_get_stock_trade_data,
"get_stock_balance_sheet": handle_get_stock_balance_sheet,
"get_stock_cashflow": handle_get_stock_cashflow,
"search_stocks_by_criteria": handle_search_stocks_by_criteria,
"get_stock_comparison": handle_get_stock_comparison,
"get_user_watchlist": handle_get_user_watchlist,
"get_user_following_events": handle_get_user_following_events,
}
# ==================== Agent系统实现 ====================
class MCPAgentIntegrated:
"""集成版 MCP Agent - 使用 Kimi 和 DeepMoney"""
def __init__(self):
# 初始化 Kimi 客户端(计划制定)
self.kimi_client = OpenAI(
api_key=KIMI_CONFIG["api_key"],
base_url=KIMI_CONFIG["base_url"],
)
self.kimi_model = KIMI_CONFIG["model"]
# 初始化 DeepMoney 客户端(新闻总结)
self.deepmoney_client = OpenAI(
api_key=DEEPMONEY_CONFIG["api_key"],
base_url=DEEPMONEY_CONFIG["base_url"],
)
self.deepmoney_model = DEEPMONEY_CONFIG["model"]
def get_planning_prompt(self, tools: List[dict]) -> str:
"""获取计划制定的系统提示词"""
tools_desc = "\n\n".join([
f"**{tool['name']}**\n"
f"描述:{tool['description']}\n"
f"参数:{json.dumps(tool['parameters'], ensure_ascii=False, indent=2)}"
for tool in tools
])
return f"""你是"价小前"北京价值前沿科技公司的AI投研聊天助手。
## 你的人格特征
- **名字**: 价小前
- **身份**: 北京价值前沿科技公司的专业AI投研助手
- **专业领域**: 股票投资研究、市场分析、新闻解读、财务分析
- **性格**: 专业、严谨、友好,擅长用简洁的语言解释复杂的金融概念
- **服务宗旨**: 帮助投资者做出更明智的投资决策,提供数据驱动的研究支持
## 可用工具
{tools_desc}
## 特殊工具
- **summarize_news**: 使用 DeepMoney 模型总结新闻数据
- 参数: {{"data": "新闻列表JSON", "focus": "关注点"}}
- 适用场景: 当需要总结新闻、研报等文本数据时
## 重要知识
- 贵州茅台: 600519
- 涨停: 涨幅约10%
- 概念板块: 相同题材股票分类
## 任务
分析用户问题,制定详细的执行计划。返回 JSON
```json
{{
"goal": "用户目标",
"reasoning": "分析思路",
"steps": [
{{
"tool": "工具名",
"arguments": {{"参数": ""}},
"reason": "原因"
}}
]
}}
```
## 规划原则
1. **先收集数据,再分析总结**
2. **使用 summarize_news 总结新闻类数据**
3. **根据问题复杂度灵活规划步骤数**
- 简单问题如查询单只股票2-3 步
- 中等复杂度如对比分析3-5 步
- 复杂问题如多维度深度分析5-8 步
- 避免过度拆分简单任务
4. **每个步骤应有明确目的,避免冗余**
5. **最后通常需要总结步骤**(除非用户只要原始数据)
## 示例
**示例 1: 简单查询2 步)**
用户:"贵州茅台最近有什么新闻"
```json
{{
"goal": "查询并总结贵州茅台最新新闻",
"reasoning": "简单的新闻查询,只需搜索和总结两步",
"steps": [
{{"tool": "search_china_news", "arguments": {{"query": "贵州茅台", "top_k": 10}}, "reason": "搜索新闻"}},
{{"tool": "summarize_news", "arguments": {{"data": "新闻数据", "focus": "重要动态"}}, "reason": "总结要点"}}
]
}}
```
**示例 2: 中等复杂度4 步)**
用户:"对比分析贵州茅台和五粮液的投资价值"
```json
{{
"goal": "对比分析两只股票的投资价值",
"reasoning": "需要分别获取两只股票的数据,然后对比分析",
"steps": [
{{"tool": "get_stock_info", "arguments": {{"stock_code": "600519"}}, "reason": "获取茅台数据"}},
{{"tool": "get_stock_info", "arguments": {{"stock_code": "000858"}}, "reason": "获取五粮液数据"}},
{{"tool": "search_china_news", "arguments": {{"query": "茅台 五粮液 对比", "top_k": 5}}, "reason": "搜索对比分析文章"}},
{{"tool": "summarize_news", "arguments": {{"data": "新闻", "focus": "投资价值对比"}}, "reason": "总结对比结论"}}
]
}}
```
**示例 3: 复杂分析6 步)**
用户:"全面分析人工智能概念板块的投资机会"
```json
{{
"goal": "深度分析人工智能板块的投资机会",
"reasoning": "需要获取板块数据、龙头股、资金流向、新闻动态等多维度信息",
"steps": [
{{"tool": "get_concept_stocks", "arguments": {{"concept": "人工智能"}}, "reason": "获取概念成分股"}},
{{"tool": "get_concept_money_flow", "arguments": {{"concept": "人工智能"}}, "reason": "获取资金流向"}},
{{"tool": "get_limit_up_stocks", "arguments": {{"concept": "人工智能"}}, "reason": "查看涨停股情况"}},
{{"tool": "search_china_news", "arguments": {{"query": "人工智能概念股", "top_k": 15}}, "reason": "搜索最新新闻"}},
{{"tool": "get_stock_info", "arguments": {{"stock_code": "300496"}}, "reason": "分析龙头股中科创达"}},
{{"tool": "summarize_news", "arguments": {{"data": "所有数据", "focus": "投资机会和风险"}}, "reason": "综合分析总结"}}
]
}}
```
**重要提示**
- 简单问题不要硬凑步骤2-3 步足够
- 复杂问题可以拆分到 6-8 步,但每步必须有实际价值
- 避免重复调用相同工具(除非参数不同)
只返回JSON不要其他内容。"""
async def create_plan(self, user_query: str, tools: List[dict]) -> ExecutionPlan:
"""阶段1: 使用 Kimi 创建执行计划(带思考过程)"""
logger.info(f"[Planning] Kimi开始制定计划: {user_query}")
messages = [
{"role": "system", "content": self.get_planning_prompt(tools)},
{"role": "user", "content": user_query},
]
# 使用 Kimi 思考模型
response = self.kimi_client.chat.completions.create(
model=self.kimi_model,
messages=messages,
temperature=1.0, # Kimi 推荐
max_tokens=16000, # 足够容纳 reasoning_content
)
choice = response.choices[0]
message = choice.message
# 提取思考过程
reasoning_content = ""
if hasattr(message, "reasoning_content"):
reasoning_content = getattr(message, "reasoning_content")
logger.info(f"[Planning] Kimi思考过程: {reasoning_content[:200]}...")
# 提取计划内容
plan_json = message.content.strip()
# 清理可能的代码块标记
if "```json" in plan_json:
plan_json = plan_json.split("```json")[1].split("```")[0].strip()
elif "```" in plan_json:
plan_json = plan_json.split("```")[1].split("```")[0].strip()
plan_data = json.loads(plan_json)
plan = ExecutionPlan(
goal=plan_data["goal"],
reasoning=plan_data.get("reasoning", "") + "\n\n" + (reasoning_content[:500] if reasoning_content else ""),
steps=[ToolCall(**step) for step in plan_data["steps"]],
)
logger.info(f"[Planning] 计划制定完成: {len(plan.steps)}")
return plan
async def execute_tool(
self,
tool_name: str,
arguments: Dict[str, Any],
tool_handlers: Dict[str, Any],
) -> Dict[str, Any]:
"""执行单个工具"""
# 特殊工具summarize_news使用 DeepMoney
if tool_name == "summarize_news":
return await self.summarize_news_with_deepmoney(
data=arguments.get("data", ""),
focus=arguments.get("focus", "关键信息"),
)
# 调用 MCP 工具
handler = tool_handlers.get(tool_name)
if not handler:
raise ValueError(f"Tool '{tool_name}' not found")
result = await handler(arguments)
return result
async def summarize_news_with_deepmoney(self, data: str, focus: str) -> str:
"""使用 DeepMoney 模型总结新闻"""
logger.info(f"[DeepMoney] 总结新闻,关注点: {focus}")
messages = [
{
"role": "system",
"content": "你是一个专业的金融新闻分析师,擅长提取关键信息并进行总结。"
},
{
"role": "user",
"content": f"请总结以下新闻数据,关注点:{focus}\n\n数据:\n{data[:3000]}"
},
]
try:
response = self.deepmoney_client.chat.completions.create(
model=self.deepmoney_model,
messages=messages,
temperature=0.7,
max_tokens=1000,
)
summary = response.choices[0].message.content
logger.info(f"[DeepMoney] 总结完成")
return summary
except Exception as e:
logger.error(f"[DeepMoney] 总结失败: {str(e)}")
# 降级:返回简化摘要
return f"新闻总结失败,原始数据:{data[:500]}..."
async def execute_plan(
self,
plan: ExecutionPlan,
tool_handlers: Dict[str, Any],
) -> List[StepResult]:
"""阶段2: 执行计划"""
logger.info(f"[Execution] 开始执行: {len(plan.steps)}")
results = []
collected_data = {}
for i, step in enumerate(plan.steps):
logger.info(f"[Execution] 步骤 {i+1}/{len(plan.steps)}: {step.tool}")
start_time = datetime.now()
try:
# 替换占位符
arguments = step.arguments.copy()
# 如果参数值是 "前面的新闻数据" 或 "前面收集的所有数据"
if step.tool == "summarize_news":
if arguments.get("data") in ["前面的新闻数据", "前面收集的所有数据"]:
# 将收集的数据传递
arguments["data"] = json.dumps(collected_data, ensure_ascii=False, indent=2)
# 执行工具
result = await self.execute_tool(step.tool, arguments, tool_handlers)
execution_time = (datetime.now() - start_time).total_seconds()
step_result = StepResult(
step_index=i,
tool=step.tool,
arguments=arguments,
status="success",
result=result,
execution_time=execution_time,
)
results.append(step_result)
# 收集数据
collected_data[f"step_{i+1}_{step.tool}"] = result
logger.info(f"[Execution] 步骤 {i+1} 完成: {execution_time:.2f}s")
except Exception as e:
logger.error(f"[Execution] 步骤 {i+1} 失败: {str(e)}")
execution_time = (datetime.now() - start_time).total_seconds()
step_result = StepResult(
step_index=i,
tool=step.tool,
arguments=step.arguments,
status="failed",
error=str(e),
execution_time=execution_time,
)
results.append(step_result)
# 继续执行其他步骤
continue
logger.info(f"[Execution] 执行完成")
return results
async def generate_final_summary(
self,
user_query: str,
plan: ExecutionPlan,
step_results: List[StepResult],
) -> str:
"""阶段3: 使用 Kimi 生成最终总结"""
logger.info("[Summary] Kimi生成最终总结")
# 收集成功的结果
successful_results = [r for r in step_results if r.status == "success"]
if not successful_results:
return "很抱歉,所有步骤都执行失败,无法生成分析报告。"
# 构建结果文本(精简版)
results_text = "\n\n".join([
f"**步骤 {r.step_index + 1}: {r.tool}**\n"
f"结果: {str(r.result)[:800]}..."
for r in successful_results[:3] # 只取前3个避免超长
])
messages = [
{
"role": "system",
"content": """你是专业的金融研究助手。根据执行结果,生成简洁清晰的报告。
## 数据可视化能力
如果执行结果中包含数值型数据(如财务指标、交易数据、时间序列等),你可以使用 ECharts 生成图表来增强报告的可读性。
支持的图表类型:
- 折线图line适合时间序列数据如股价走势、财务指标趋势
- 柱状图bar适合对比数据如不同年份的收入、利润对比
- 饼图pie适合占比数据如业务结构、资产分布
### 图表格式(使用 Markdown 代码块)
在报告中插入图表时,使用以下格式:
```echarts
{
"title": {"text": "图表标题"},
"tooltip": {},
"xAxis": {"type": "category", "data": ["类别1", "类别2"]},
"yAxis": {"type": "value"},
"series": [{"name": "数据系列", "type": "line", "data": [100, 200]}]
}
```
### 示例
如果有股价数据,可以这样呈现:
**股价走势分析**
近30日股价呈现上涨趋势最高达到1850元。
```echarts
{
"title": {"text": "近30日股价走势", "left": "center"},
"tooltip": {"trigger": "axis"},
"xAxis": {"type": "category", "data": ["2024-01-01", "2024-01-02", "2024-01-03"]},
"yAxis": {"type": "value", "name": "股价(元)"},
"series": [{"name": "收盘价", "type": "line", "data": [1800, 1820, 1850], "smooth": true}]
}
```
**重要提示**
- ECharts 配置必须是合法的 JSON 格式
- 只在有明确数值数据时才生成图表
- 不要凭空捏造数据"""
},
{
"role": "user",
"content": f"""用户问题:{user_query}
执行计划:{plan.goal}
执行结果:
{results_text}
请生成专业的分析报告500字以内。如果结果中包含数值型数据请使用 ECharts 图表进行可视化展示。"""
},
]
try:
response = self.kimi_client.chat.completions.create(
model="kimi-k2-turbo-preview", # 使用非思考模型,更快
messages=messages,
temperature=0.7,
max_tokens=2000, # 增加 token 限制以支持图表配置
)
summary = response.choices[0].message.content
logger.info("[Summary] 总结完成")
return summary
except Exception as e:
logger.error(f"[Summary] 总结失败: {str(e)}")
# 降级:返回最后一步的结果
if successful_results:
last_result = successful_results[-1]
if isinstance(last_result.result, str):
return last_result.result
else:
return json.dumps(last_result.result, ensure_ascii=False, indent=2)
return "总结生成失败"
async def process_query(
self,
user_query: str,
tools: List[dict],
tool_handlers: Dict[str, Any],
) -> AgentResponse:
"""主流程(非流式)"""
logger.info(f"[Agent] 处理查询: {user_query}")
try:
# 阶段1: Kimi 制定计划
plan = await self.create_plan(user_query, tools)
# 阶段2: 执行工具
step_results = await self.execute_plan(plan, tool_handlers)
# 阶段3: Kimi 生成总结
final_summary = await self.generate_final_summary(
user_query, plan, step_results
)
return AgentResponse(
success=True,
message=final_summary,
plan=plan,
step_results=step_results,
final_summary=final_summary,
metadata={
"total_steps": len(plan.steps),
"successful_steps": len([r for r in step_results if r.status == "success"]),
"failed_steps": len([r for r in step_results if r.status == "failed"]),
"total_execution_time": sum(r.execution_time for r in step_results),
"model_used": {
"planning": self.kimi_model,
"summarization": "kimi-k2-turbo-preview",
"news_summary": self.deepmoney_model,
},
},
)
except Exception as e:
logger.error(f"[Agent] 错误: {str(e)}", exc_info=True)
return AgentResponse(
success=False,
message=f"处理失败: {str(e)}",
)
async def process_query_stream(
self,
user_query: str,
tools: List[dict],
tool_handlers: Dict[str, Any],
session_id: str = None,
user_id: str = None,
user_nickname: str = None,
user_avatar: str = None,
cookies: dict = None,
) -> AsyncGenerator[str, None]:
"""主流程(流式输出)- 逐步返回执行结果"""
logger.info(f"[Agent Stream] 处理查询: {user_query}")
# 将 cookies 存储为实例属性,供工具调用时使用
self.cookies = cookies or {}
try:
# 发送开始事件
yield self._format_sse("status", {"stage": "start", "message": "开始处理查询"})
# 阶段1: Kimi 制定计划(流式,带 DeepMoney 备选)
yield self._format_sse("status", {"stage": "planning", "message": "正在制定执行计划..."})
messages = [
{"role": "system", "content": self.get_planning_prompt(tools)},
{"role": "user", "content": user_query},
]
reasoning_content = ""
plan_content = ""
use_fallback = False
try:
# 尝试使用 Kimi 流式 API
stream = self.kimi_client.chat.completions.create(
model=self.kimi_model,
messages=messages,
temperature=1.0,
max_tokens=16000,
stream=True, # 启用流式输出
)
# 逐块接收 Kimi 的响应
for chunk in stream:
if chunk.choices[0].delta.content:
content_chunk = chunk.choices[0].delta.content
plan_content += content_chunk
# 发送思考过程片段
yield self._format_sse("thinking", {
"content": content_chunk,
"stage": "planning"
})
# 提取 reasoning_content如果有
if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'reasoning_content'):
reasoning_chunk = chunk.choices[0].delta.reasoning_content
if reasoning_chunk:
reasoning_content += reasoning_chunk
# 发送推理过程片段
yield self._format_sse("reasoning", {
"content": reasoning_chunk
})
except Exception as kimi_error:
# 检查是否是内容风控错误400
error_str = str(kimi_error)
if "400" in error_str and ("content_filter" in error_str or "high risk" in error_str):
logger.warning(f"[Planning] Kimi 内容风控拒绝,切换到 DeepMoney: {error_str}")
use_fallback = True
yield self._format_sse("status", {
"stage": "planning",
"message": "切换到备用模型制定计划..."
})
try:
# 使用 DeepMoney 备选方案(非流式,因为 DeepMoney 可能不支持流式)
fallback_response = self.deepmoney_client.chat.completions.create(
model=self.deepmoney_model,
messages=messages,
temperature=0.7,
max_tokens=16000,
)
plan_content = fallback_response.choices[0].message.content
# 发送完整的计划内容(一次性)
yield self._format_sse("thinking", {
"content": plan_content,
"stage": "planning"
})
logger.info(f"[Planning] DeepMoney 备选方案成功")
except Exception as fallback_error:
logger.error(f"[Planning] DeepMoney 备选方案也失败: {fallback_error}")
raise Exception(f"Kimi 和 DeepMoney 都无法生成计划: {kimi_error}, {fallback_error}")
else:
# 不是内容风控错误,直接抛出
logger.error(f"[Planning] Kimi 调用失败(非风控原因): {kimi_error}")
raise
# 解析完整的计划
plan_json = plan_content.strip()
# 清理可能的代码块标记
if "```json" in plan_json:
plan_json = plan_json.split("```json")[1].split("```")[0].strip()
elif "```" in plan_json:
plan_json = plan_json.split("```")[1].split("```")[0].strip()
plan_data = json.loads(plan_json)
plan = ExecutionPlan(
goal=plan_data["goal"],
reasoning=plan_data.get("reasoning", "") + "\n\n" + (reasoning_content[:500] if reasoning_content else ""),
steps=[ToolCall(**step) for step in plan_data["steps"]],
)
logger.info(f"[Planning] 计划制定完成: {len(plan.steps)}")
# 发送完整计划
yield self._format_sse("plan", {
"goal": plan.goal,
"reasoning": plan.reasoning,
"steps": [
{"tool": step.tool, "arguments": step.arguments, "reason": step.reason}
for step in plan.steps
],
})
# 阶段2: 执行工具(逐步返回)
yield self._format_sse("status", {"stage": "executing", "message": f"开始执行 {len(plan.steps)} 个步骤"})
step_results = []
collected_data = {}
for i, step in enumerate(plan.steps):
# 发送步骤开始事件
yield self._format_sse("step_start", {
"step_index": i,
"tool": step.tool,
"arguments": step.arguments,
"reason": step.reason,
})
start_time = datetime.now()
try:
# 替换占位符
arguments = step.arguments.copy()
if step.tool == "summarize_news":
if arguments.get("data") in ["前面的新闻数据", "前面收集的所有数据"]:
arguments["data"] = json.dumps(collected_data, ensure_ascii=False, indent=2)
# 执行工具
result = await self.execute_tool(step.tool, arguments, tool_handlers)
execution_time = (datetime.now() - start_time).total_seconds()
step_result = StepResult(
step_index=i,
tool=step.tool,
arguments=arguments,
status="success",
result=result,
execution_time=execution_time,
)
step_results.append(step_result)
collected_data[f"step_{i+1}_{step.tool}"] = result
# 发送步骤完成事件(包含结果)
yield self._format_sse("step_complete", {
"step_index": i,
"tool": step.tool,
"status": "success",
"result": result,
"execution_time": execution_time,
})
except Exception as e:
execution_time = (datetime.now() - start_time).total_seconds()
step_result = StepResult(
step_index=i,
tool=step.tool,
arguments=step.arguments,
status="failed",
error=str(e),
execution_time=execution_time,
)
step_results.append(step_result)
# 发送步骤失败事件
yield self._format_sse("step_complete", {
"step_index": i,
"tool": step.tool,
"status": "failed",
"error": str(e),
"execution_time": execution_time,
})
# 阶段3: Kimi 生成总结(流式)
yield self._format_sse("status", {"stage": "summarizing", "message": "正在生成最终总结..."})
# 收集成功的结果
successful_results = [r for r in step_results if r.status == "success"]
if not successful_results:
yield self._format_sse("summary", {
"content": "很抱歉,所有步骤都执行失败,无法生成分析报告。",
"metadata": {
"total_steps": len(plan.steps),
"successful_steps": 0,
"failed_steps": len(step_results),
"total_execution_time": sum(r.execution_time for r in step_results),
},
})
else:
# 构建结果文本(精简版)
results_text = "\n\n".join([
f"**步骤 {r.step_index + 1}: {r.tool}**\n"
f"结果: {str(r.result)[:800]}..."
for r in successful_results[:3] # 只取前3个避免超长
])
messages = [
{
"role": "system",
"content": """你是专业的金融研究助手。根据执行结果,生成简洁清晰的报告。
## 数据可视化能力
如果执行结果中包含数值型数据(如财务指标、交易数据、时间序列等),你可以使用 ECharts 生成图表来增强报告的可读性。
支持的图表类型:
- 折线图line适合时间序列数据如股价走势、财务指标趋势
- 柱状图bar适合对比数据如不同年份的收入、利润对比
- 饼图pie适合占比数据如业务结构、资产分布
### 图表格式(使用 Markdown 代码块)
在报告中插入图表时,使用以下格式:
```echarts
{
"title": {"text": "图表标题"},
"tooltip": {},
"xAxis": {"type": "category", "data": ["类别1", "类别2"]},
"yAxis": {"type": "value"},
"series": [{"name": "数据系列", "type": "line", "data": [100, 200]}]
}
```
**重要提示**
- ECharts 配置必须是合法的 JSON 格式
- 只在有明确数值数据时才生成图表
- 不要凭空捏造数据"""
},
{
"role": "user",
"content": f"""用户问题:{user_query}
执行计划:{plan.goal}
执行结果:
{results_text}
请生成专业的分析报告500字以内。如果结果中包含数值型数据请使用 ECharts 图表进行可视化展示。"""
},
]
# 使用流式 API 生成总结(带 DeepMoney 备选)
final_summary = ""
try:
summary_stream = self.kimi_client.chat.completions.create(
model="kimi-k2-turbo-preview",
messages=messages,
temperature=0.7,
max_tokens=2000,
stream=True, # 启用流式输出
)
# 逐块发送总结内容
for chunk in summary_stream:
if chunk.choices[0].delta.content:
content_chunk = chunk.choices[0].delta.content
final_summary += content_chunk
# 发送总结片段
yield self._format_sse("summary_chunk", {
"content": content_chunk
})
logger.info("[Summary] 流式总结完成")
except Exception as kimi_error:
# 检查是否是内容风控错误400
error_str = str(kimi_error)
if "400" in error_str and ("content_filter" in error_str or "high risk" in error_str):
logger.warning(f"[Summary] Kimi 内容风控拒绝,切换到 DeepMoney: {error_str}")
yield self._format_sse("status", {
"stage": "summarizing",
"message": "切换到备用模型生成总结..."
})
try:
# 使用 DeepMoney 备选方案(非流式)
fallback_response = self.deepmoney_client.chat.completions.create(
model=self.deepmoney_model,
messages=messages,
temperature=0.7,
max_tokens=2000,
)
final_summary = fallback_response.choices[0].message.content
# 发送完整的总结内容(一次性)
yield self._format_sse("summary_chunk", {
"content": final_summary
})
logger.info(f"[Summary] DeepMoney 备选方案成功")
except Exception as fallback_error:
logger.error(f"[Summary] DeepMoney 备选方案也失败: {fallback_error}")
# 使用降级方案:简单拼接执行结果
final_summary = f"执行了 {len(plan.steps)} 个步骤,其中 {len(successful_results)} 个成功。\n\n执行结果:\n{results_text[:500]}..."
yield self._format_sse("summary_chunk", {
"content": final_summary
})
logger.warning("[Summary] 使用降级方案(简单拼接)")
else:
# 不是内容风控错误,直接抛出
logger.error(f"[Summary] Kimi 调用失败(非风控原因): {kimi_error}")
raise
# 发送完整的总结和元数据
yield self._format_sse("summary", {
"content": final_summary,
"metadata": {
"total_steps": len(plan.steps),
"successful_steps": len(successful_results),
"failed_steps": len([r for r in step_results if r.status == "failed"]),
"total_execution_time": sum(r.execution_time for r in step_results),
},
})
# 保存 Agent 回复到 ES如果提供了 session_id
if session_id and user_id:
try:
# 将执行步骤转换为 JSON 字符串
steps_json = json.dumps(
[{"tool": step.tool, "status": step.status, "result": step.result} for step in step_results],
ensure_ascii=False
)
# 将 plan 转换为 JSON 字符串ES 中 plan 字段是 text 类型)
plan_json = json.dumps({
"goal": plan.goal,
"reasoning": plan.reasoning,
"steps": [{"tool": step.tool, "arguments": step.arguments, "reason": step.reason} for step in plan.steps]
}, ensure_ascii=False)
es_client.save_chat_message(
session_id=session_id,
user_id=user_id,
user_nickname=user_nickname or "匿名用户",
user_avatar=user_avatar or "",
message_type="assistant",
message=final_summary,
plan=plan_json,
steps=steps_json,
)
logger.info(f"[ES] Agent 回复已保存到会话 {session_id}")
except Exception as e:
logger.error(f"[ES] 保存 Agent 回复失败: {e}", exc_info=True)
# 发送完成事件
yield self._format_sse("done", {"message": "处理完成"})
except Exception as e:
logger.error(f"[Agent Stream] 错误: {str(e)}", exc_info=True)
yield self._format_sse("error", {"message": f"处理失败: {str(e)}"})
def _format_sse(self, event: str, data: dict) -> str:
"""格式化 SSE 消息"""
return f"event: {event}\ndata: {json.dumps(data, ensure_ascii=False)}\n\n"
# 创建 Agent 实例(全局)
agent = MCPAgentIntegrated()
# ==================== Web聊天接口 ====================
class ChatMessage(BaseModel):
"""聊天消息"""
role: Literal["user", "assistant", "system"]
content: str
class ChatRequest(BaseModel):
"""聊天请求"""
messages: List[ChatMessage]
stream: bool = False
@app.post("/chat")
async def chat(request: ChatRequest):
"""
Web聊天接口
这是一个简化的接口实际应该集成LLM API如OpenAI、Claude等
这里只是演示如何使用工具
"""
# TODO: 集成实际的LLM API
# 1. 将消息发送给LLM
# 2. LLM返回需要调用的工具
# 3. 调用工具并获取结果
# 4. 将工具结果返回给LLM
# 5. LLM生成最终回复
return {
"message": "Chat endpoint placeholder - integrate with your LLM provider",
"available_tools": len(TOOLS),
"hint": "Use POST /tools/call to invoke tools"
}
@app.post("/agent/chat", response_model=AgentResponse)
async def agent_chat(request: AgentChatRequest):
"""智能代理对话端点(非流式)"""
logger.info(f"Agent chat: {request.message} (user: {request.user_id})")
# ==================== 权限检查 ====================
# 订阅等级判断函数(与 app.py 保持一致)
def subscription_level(sub_type: str) -> int:
"""将订阅类型映射到等级数值free=0, pro=1, max=2"""
mapping = {'free': 0, 'pro': 1, 'max': 2}
return mapping.get((sub_type or 'free').lower(), 0)
# 获取用户订阅类型(默认为 free
user_subscription = (request.subscription_type or 'free').lower()
required_level = 'max'
# 权限检查:仅允许 max 用户访问(与传导链分析权限保持一致)
has_access = subscription_level(user_subscription) >= subscription_level(required_level)
if not has_access:
logger.warning(
f"权限检查失败 - user_id: {request.user_id}, "
f"nickname: {request.user_nickname}, "
f"subscription_type: {user_subscription}, "
f"required: {required_level}"
)
raise HTTPException(
status_code=403,
detail="很抱歉,「价小前投研」功能仅对 Max 订阅用户开放。请升级您的订阅以使用此功能。"
)
logger.info(
f"权限检查通过 - user_id: {request.user_id}, "
f"nickname: {request.user_nickname}, "
f"subscription_type: {user_subscription}"
)
# ==================== 会话管理 ====================
# 如果没有提供 session_id创建新会话
session_id = request.session_id or str(uuid.uuid4())
# 保存用户消息到 ES
try:
es_client.save_chat_message(
session_id=session_id,
user_id=request.user_id or "anonymous",
user_nickname=request.user_nickname or "匿名用户",
user_avatar=request.user_avatar or "",
message_type="user",
message=request.message,
)
except Exception as e:
logger.error(f"保存用户消息失败: {e}")
# 获取工具列表
tools = [tool.dict() for tool in TOOLS]
# 添加特殊工具summarize_news
tools.append({
"name": "summarize_news",
"description": "使用 DeepMoney 模型总结新闻数据,提取关键信息",
"parameters": {
"type": "object",
"properties": {
"data": {
"type": "string",
"description": "要总结的新闻数据JSON格式"
},
"focus": {
"type": "string",
"description": "关注点,例如:'市场影响''投资机会'"
}
},
"required": ["data"]
}
})
# 处理查询
response = await agent.process_query(
user_query=request.message,
tools=tools,
tool_handlers=TOOL_HANDLERS,
)
# 保存 Agent 回复到 ES
try:
# 将执行步骤转换为JSON字符串
steps_json = json.dumps(
[{"tool": step.tool, "status": step.status, "result": step.result} for step in response.step_results],
ensure_ascii=False
)
# 将 plan 转换为 JSON 字符串ES 中 plan 字段是 text 类型)
plan_json = json.dumps(response.plan.dict(), ensure_ascii=False) if response.plan else None
es_client.save_chat_message(
session_id=session_id,
user_id=request.user_id or "anonymous",
user_nickname=request.user_nickname or "匿名用户",
user_avatar=request.user_avatar or "",
message_type="assistant",
message=response.final_summary, # 使用 final_summary 而不是 final_answer
plan=plan_json, # 传递 JSON 字符串而不是字典
steps=steps_json,
)
except Exception as e:
logger.error(f"保存 Agent 回复失败: {e}", exc_info=True)
# 在响应中返回 session_id
response_dict = response.dict()
response_dict["session_id"] = session_id
return response_dict
@app.post("/agent/chat/stream")
async def agent_chat_stream(chat_request: AgentChatRequest, request: Request):
"""智能代理对话端点(流式 SSE"""
logger.info(f"Agent chat stream: {chat_request.message}")
# 获取请求的 cookies用于转发到需要认证的 API
cookies = request.cookies
# ==================== 权限检查 ====================
# 订阅等级判断函数(与 app.py 保持一致)
def subscription_level(sub_type: str) -> int:
"""将订阅类型映射到等级数值free=0, pro=1, max=2"""
mapping = {'free': 0, 'pro': 1, 'max': 2}
return mapping.get((sub_type or 'free').lower(), 0)
# 获取用户订阅类型(默认为 free
user_subscription = (chat_request.subscription_type or 'free').lower()
required_level = 'max'
# 权限检查:仅允许 max 用户访问(与传导链分析权限保持一致)
has_access = subscription_level(user_subscription) >= subscription_level(required_level)
if not has_access:
logger.warning(
f"[Stream] 权限检查失败 - user_id: {chat_request.user_id}, "
f"nickname: {chat_request.user_nickname}, "
f"subscription_type: {user_subscription}, "
f"required: {required_level}"
)
raise HTTPException(
status_code=403,
detail="很抱歉,「价小前投研」功能仅对 Max 订阅用户开放。请升级您的订阅以使用此功能。"
)
logger.info(
f"[Stream] 权限检查通过 - user_id: {chat_request.user_id}, "
f"nickname: {chat_request.user_nickname}, "
f"subscription_type: {user_subscription}"
)
# 如果没有提供 session_id创建新会话
session_id = chat_request.session_id or str(uuid.uuid4())
# 保存用户消息到 ES
try:
es_client.save_chat_message(
session_id=session_id,
user_id=chat_request.user_id or "anonymous",
user_nickname=chat_request.user_nickname or "匿名用户",
user_avatar=chat_request.user_avatar or "",
message_type="user",
message=chat_request.message,
)
logger.info(f"[ES] 用户消息已保存到会话 {session_id}")
except Exception as e:
logger.error(f"[ES] 保存用户消息失败: {e}")
# 获取工具列表
tools = [tool.dict() for tool in TOOLS]
# 添加特殊工具summarize_news
tools.append({
"name": "summarize_news",
"description": "使用 DeepMoney 模型总结新闻数据,提取关键信息",
"parameters": {
"type": "object",
"properties": {
"data": {
"type": "string",
"description": "要总结的新闻数据JSON格式"
},
"focus": {
"type": "string",
"description": "关注点,例如:'市场影响''投资机会'"
}
},
"required": ["data"]
}
})
# 返回流式响应
return StreamingResponse(
agent.process_query_stream(
user_query=chat_request.message,
tools=tools,
tool_handlers=TOOL_HANDLERS,
session_id=session_id,
user_id=chat_request.user_id,
user_nickname=chat_request.user_nickname,
user_avatar=chat_request.user_avatar,
cookies=cookies, # 传递 cookies 用于认证 API 调用
),
media_type="text/event-stream",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no", # 禁用 Nginx 缓冲
},
)
# ==================== 聊天记录管理 API ====================
@app.get("/agent/sessions")
async def get_chat_sessions(user_id: str, limit: int = 50):
"""
获取用户的聊天会话列表
Args:
user_id: 用户ID
limit: 返回数量默认50
Returns:
会话列表
"""
try:
sessions = es_client.get_chat_sessions(user_id, limit)
return {
"success": True,
"data": sessions,
"count": len(sessions)
}
except Exception as e:
logger.error(f"获取会话列表失败: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/agent/history/{session_id}")
async def get_chat_history(session_id: str, limit: int = 100):
"""
获取指定会话的聊天历史
Args:
session_id: 会话ID
limit: 返回数量默认100
Returns:
聊天记录列表
"""
try:
messages = es_client.get_chat_history(session_id, limit)
return {
"success": True,
"data": messages,
"count": len(messages)
}
except Exception as e:
logger.error(f"获取聊天历史失败: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/agent/search")
async def search_chat_history(user_id: str, query: str, top_k: int = 10):
"""
向量搜索聊天历史
Args:
user_id: 用户ID
query: 查询文本
top_k: 返回数量默认10
Returns:
相关聊天记录列表
"""
try:
results = es_client.search_chat_history(user_id, query, top_k)
return {
"success": True,
"data": results,
"count": len(results)
}
except Exception as e:
logger.error(f"向量搜索失败: {e}")
raise HTTPException(status_code=500, detail=str(e))
# ==================== 健康检查 ====================
@app.get("/health")
async def health_check():
"""健康检查"""
# 检查各个后端服务的健康状态
services_status = {}
try:
response = await HTTP_CLIENT.get(f"{ServiceEndpoints.NEWS_API}/search_news?query=test&top_k=1", timeout=5.0)
services_status["news_api"] = "healthy" if response.status_code == 200 else "unhealthy"
except:
services_status["news_api"] = "unhealthy"
try:
response = await HTTP_CLIENT.get(f"{ServiceEndpoints.CONCEPT_API}/", timeout=5.0)
services_status["concept_api"] = "healthy" if response.status_code == 200 else "unhealthy"
except:
services_status["concept_api"] = "unhealthy"
try:
response = await HTTP_CLIENT.get(f"{ServiceEndpoints.STOCK_ANALYSIS_API}/api/v1/health", timeout=5.0)
services_status["stock_analysis_api"] = "healthy" if response.status_code == 200 else "unhealthy"
except:
services_status["stock_analysis_api"] = "unhealthy"
return {
"status": "healthy",
"timestamp": datetime.now().isoformat(),
"services": services_status
}
# ==================== 错误处理 ====================
@app.exception_handler(HTTPException)
async def http_exception_handler(request: Request, exc: HTTPException):
"""HTTP异常处理"""
return JSONResponse(
status_code=exc.status_code,
content={
"success": False,
"error": exc.detail,
"timestamp": datetime.now().isoformat()
}
)
@app.exception_handler(Exception)
async def general_exception_handler(request: Request, exc: Exception):
"""通用异常处理"""
logger.error(f"Unexpected error: {str(exc)}", exc_info=True)
return JSONResponse(
status_code=500,
content={
"success": False,
"error": "Internal server error",
"detail": str(exc),
"timestamp": datetime.now().isoformat()
}
)
# ==================== 应用启动/关闭 ====================
@app.on_event("startup")
async def startup_event():
"""应用启动"""
logger.info("MCP Server starting up...")
logger.info(f"Registered {len(TOOLS)} tools")
# 初始化数据库连接池
try:
await db.get_pool()
logger.info("MySQL connection pool initialized")
except Exception as e:
logger.error(f"Failed to initialize MySQL pool: {e}")
@app.on_event("shutdown")
async def shutdown_event():
"""应用关闭"""
logger.info("MCP Server shutting down...")
await HTTP_CLIENT.aclose()
# 关闭数据库连接池
try:
await db.close_pool()
logger.info("MySQL connection pool closed")
except Exception as e:
logger.error(f"Failed to close MySQL pool: {e}")
# ==================== 主程序 ====================
if __name__ == "__main__":
import uvicorn
uvicorn.run(
"mcp_server:app",
host="0.0.0.0",
port=8900,
reload=True,
log_level="info"
)