952 lines
49 KiB
HTML
952 lines
49 KiB
HTML
|
||
<!DOCTYPE html>
|
||
<html lang="zh-CN">
|
||
<head>
|
||
<meta charset="UTF-8">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||
<title>GPU概念股分析 - AI时代的算力革命</title>
|
||
<!-- Bootstrap 5 CSS -->
|
||
<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0/dist/css/bootstrap.min.css" rel="stylesheet">
|
||
<!-- Bootstrap Icons -->
|
||
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap-icons@1.10.0/font/bootstrap-icons.css">
|
||
<!-- Custom CSS -->
|
||
<style>
|
||
:root {
|
||
--primary-gradient: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
||
--secondary-gradient: linear-gradient(135deg, #f093fb 0%, #f5576c 100%);
|
||
--dark-gradient: linear-gradient(135deg, #434343 0%, #000000 100%);
|
||
}
|
||
|
||
body {
|
||
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, 'Helvetica Neue', Arial, sans-serif;
|
||
background-color: #f8f9fa;
|
||
color: #333;
|
||
}
|
||
|
||
.hero-section {
|
||
background: var(--primary-gradient);
|
||
color: white;
|
||
padding: 4rem 0;
|
||
position: relative;
|
||
overflow: hidden;
|
||
}
|
||
|
||
.hero-section::before {
|
||
content: '';
|
||
position: absolute;
|
||
top: 0;
|
||
left: 0;
|
||
right: 0;
|
||
bottom: 0;
|
||
background: url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 1440 320"><path fill="%23ffffff" fill-opacity="0.1" d="M0,96L48,112C96,128,192,160,288,160C384,160,480,128,576,112C672,96,768,96,864,112C960,128,1056,160,1152,160C1248,160,1344,128,1392,112L1440,96L1440,320L1392,320C1344,320,1248,320,1152,320C1056,320,960,320,864,320C768,320,672,320,576,320C480,320,384,320,288,320C192,320,96,320,48,320L0,320Z"></path></svg>') no-repeat bottom;
|
||
background-size: cover;
|
||
}
|
||
|
||
.section-title {
|
||
position: relative;
|
||
display: inline-block;
|
||
margin-bottom: 2rem;
|
||
}
|
||
|
||
.section-title::after {
|
||
content: '';
|
||
position: absolute;
|
||
bottom: -10px;
|
||
left: 0;
|
||
width: 60px;
|
||
height: 4px;
|
||
background: var(--primary-gradient);
|
||
}
|
||
|
||
.timeline {
|
||
position: relative;
|
||
padding: 20px 0;
|
||
}
|
||
|
||
.timeline::before {
|
||
content: '';
|
||
position: absolute;
|
||
top: 0;
|
||
left: 50%;
|
||
width: 2px;
|
||
height: 100%;
|
||
background: #e9ecef;
|
||
transform: translateX(-50%);
|
||
}
|
||
|
||
.timeline-item {
|
||
position: relative;
|
||
margin-bottom: 30px;
|
||
}
|
||
|
||
.timeline-item::before {
|
||
content: '';
|
||
position: absolute;
|
||
top: 5px;
|
||
left: 50%;
|
||
width: 16px;
|
||
height: 16px;
|
||
border-radius: 50%;
|
||
background: var(--primary-gradient);
|
||
transform: translateX(-50%);
|
||
z-index: 1;
|
||
}
|
||
|
||
.timeline-content {
|
||
width: 45%;
|
||
padding: 20px;
|
||
background: white;
|
||
border-radius: 8px;
|
||
box-shadow: 0 2px 10px rgba(0,0,0,0.1);
|
||
position: relative;
|
||
}
|
||
|
||
.timeline-item:nth-child(odd) .timeline-content {
|
||
margin-left: auto;
|
||
}
|
||
|
||
.timeline-date {
|
||
position: absolute;
|
||
top: 0;
|
||
width: 100px;
|
||
text-align: center;
|
||
font-weight: bold;
|
||
color: #6c757d;
|
||
}
|
||
|
||
.timeline-item:nth-child(odd) .timeline-date {
|
||
left: -120px;
|
||
}
|
||
|
||
.timeline-item:nth-child(even) .timeline-date {
|
||
right: -120px;
|
||
}
|
||
|
||
.card {
|
||
border: none;
|
||
border-radius: 10px;
|
||
box-shadow: 0 4px 15px rgba(0,0,0,0.08);
|
||
transition: transform 0.3s ease, box-shadow 0.3s ease;
|
||
height: 100%;
|
||
}
|
||
|
||
.card:hover {
|
||
transform: translateY(-5px);
|
||
box-shadow: 0 8px 25px rgba(0,0,0,0.15);
|
||
}
|
||
|
||
.card-header {
|
||
background: var(--primary-gradient);
|
||
color: white;
|
||
border-radius: 10px 10px 0 0 !important;
|
||
padding: 1rem 1.5rem;
|
||
}
|
||
|
||
.industry-chain {
|
||
display: flex;
|
||
justify-content: space-between;
|
||
margin: 2rem 0;
|
||
flex-wrap: wrap;
|
||
}
|
||
|
||
.chain-item {
|
||
flex: 1;
|
||
min-width: 200px;
|
||
margin: 0.5rem;
|
||
padding: 1.5rem;
|
||
background: white;
|
||
border-radius: 10px;
|
||
box-shadow: 0 2px 10px rgba(0,0,0,0.08);
|
||
text-align: center;
|
||
transition: transform 0.3s ease;
|
||
}
|
||
|
||
.chain-item:hover {
|
||
transform: translateY(-5px);
|
||
}
|
||
|
||
.chain-icon {
|
||
font-size: 2.5rem;
|
||
margin-bottom: 1rem;
|
||
color: #667eea;
|
||
}
|
||
|
||
.stock-table {
|
||
background: white;
|
||
border-radius: 10px;
|
||
overflow: hidden;
|
||
box-shadow: 0 4px 15px rgba(0,0,0,0.08);
|
||
}
|
||
|
||
.stock-table thead {
|
||
background: var(--primary-gradient);
|
||
color: white;
|
||
}
|
||
|
||
.stock-table th {
|
||
font-weight: 600;
|
||
padding: 1rem;
|
||
border: none;
|
||
}
|
||
|
||
.stock-table td {
|
||
padding: 1rem;
|
||
vertical-align: middle;
|
||
border-color: #e9ecef;
|
||
}
|
||
|
||
.stock-table tbody tr:hover {
|
||
background-color: #f8f9fa;
|
||
}
|
||
|
||
.badge-chain {
|
||
display: inline-block;
|
||
padding: 0.35em 0.65em;
|
||
font-size: 0.75em;
|
||
font-weight: 700;
|
||
line-height: 1;
|
||
text-align: center;
|
||
white-space: nowrap;
|
||
vertical-align: baseline;
|
||
border-radius: 0.375rem;
|
||
margin: 0.2rem;
|
||
}
|
||
|
||
.badge-gpu-chip {
|
||
background-color: #667eea;
|
||
color: white;
|
||
}
|
||
|
||
.badge-gpu-hardware {
|
||
background-color: #764ba2;
|
||
color: white;
|
||
}
|
||
|
||
.badge-ai-model {
|
||
background-color: #f093fb;
|
||
color: white;
|
||
}
|
||
|
||
.badge-gpu-investment {
|
||
background-color: #f5576c;
|
||
color: white;
|
||
}
|
||
|
||
.badge-graphics-card {
|
||
background-color: #4facfe;
|
||
color: white;
|
||
}
|
||
|
||
.badge-liquid-cooling {
|
||
background-color: #43e97b;
|
||
color: white;
|
||
}
|
||
|
||
.badge-ai-application {
|
||
background-color: #fa709a;
|
||
color: white;
|
||
}
|
||
|
||
.highlight-box {
|
||
background: white;
|
||
border-left: 4px solid #667eea;
|
||
padding: 1.5rem;
|
||
margin: 1.5rem 0;
|
||
border-radius: 0 8px 8px 0;
|
||
box-shadow: 0 2px 10px rgba(0,0,0,0.08);
|
||
}
|
||
|
||
.footer {
|
||
background: var(--dark-gradient);
|
||
color: white;
|
||
padding: 3rem 0 1.5rem;
|
||
margin-top: 4rem;
|
||
}
|
||
|
||
@media (max-width: 768px) {
|
||
.timeline::before {
|
||
left: 30px;
|
||
}
|
||
|
||
.timeline-item::before {
|
||
left: 30px;
|
||
}
|
||
|
||
.timeline-content {
|
||
width: calc(100% - 60px);
|
||
margin-left: 60px !important;
|
||
}
|
||
|
||
.timeline-date {
|
||
position: relative;
|
||
left: 0 !important;
|
||
right: 0 !important;
|
||
margin-bottom: 10px;
|
||
}
|
||
|
||
.industry-chain {
|
||
flex-direction: column;
|
||
}
|
||
|
||
.chain-item {
|
||
margin: 0.5rem 0;
|
||
}
|
||
|
||
.stock-table {
|
||
font-size: 0.875rem;
|
||
}
|
||
|
||
.stock-table th,
|
||
.stock-table td {
|
||
padding: 0.5rem;
|
||
}
|
||
}
|
||
</style>
|
||
</head>
|
||
<body>
|
||
<!-- Navigation -->
|
||
<nav class="navbar navbar-expand-lg navbar-dark bg-dark sticky-top">
|
||
<div class="container">
|
||
<a class="navbar-brand" href="#"><i class="bi bi-cpu"></i> GPU概念股分析</a>
|
||
<button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#navbarNav">
|
||
<span class="navbar-toggler-icon"></span>
|
||
</button>
|
||
<div class="collapse navbar-collapse" id="navbarNav">
|
||
<ul class="navbar-nav ms-auto">
|
||
<li class="nav-item"><a class="nav-link" href="#summary">核心观点</a></li>
|
||
<li class="nav-item"><a class="nav-link" href="#timeline">事件时间轴</a></li>
|
||
<li class="nav-item"><a class="nav-link" href="#logic">核心逻辑</a></li>
|
||
<li class="nav-item"><a class="nav-link" href="#catalyst">催化剂</a></li>
|
||
<li class="nav-item"><a class="nav-link" href="#stocks">股票数据</a></li>
|
||
<li class="nav-item"><a class="nav-link" href="#risks">风险分析</a></li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
</nav>
|
||
|
||
<!-- Hero Section -->
|
||
<section class="hero-section">
|
||
<div class="container">
|
||
<div class="row align-items-center">
|
||
<div class="col-lg-8">
|
||
<h1 class="display-4 fw-bold mb-4">GPU概念股:AI时代的算力革命</h1>
|
||
<p class="lead mb-4">GPU概念股的兴起源于人工智能大模型爆发式发展对算力的迫切需求,叠加国际地缘政治因素推动的国产替代浪潮。这一概念的核心背景是GPU作为AI计算的基础硬件,其性能和供应直接决定了AI技术的发展速度和应用广度。</p>
|
||
<div class="d-flex flex-wrap gap-2">
|
||
<span class="badge bg-light text-dark fs-6"><i class="bi bi-cpu"></i> 算力需求</span>
|
||
<span class="badge bg-light text-dark fs-6"><i class="bi bi-globe"></i> 国产替代</span>
|
||
<span class="badge bg-light text-dark fs-6"><i class="bi bi-robot"></i> AI应用</span>
|
||
<span class="badge bg-light text-dark fs-6"><i class="bi bi-lightning"></i> 技术变革</span>
|
||
</div>
|
||
</div>
|
||
<div class="col-lg-4 text-center">
|
||
<img src="https://picsum.photos/seed/gpu-concept/400/300" alt="GPU概念" class="img-fluid rounded shadow">
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</section>
|
||
|
||
<!-- Main Content -->
|
||
<div class="container my-5">
|
||
<!-- Executive Summary -->
|
||
<section id="summary" class="mb-5">
|
||
<h2 class="section-title">核心观点摘要</h2>
|
||
<div class="highlight-box">
|
||
<p class="mb-0"><strong>GPU概念股正处于技术变革与国产替代的双重驱动下</strong>,当前处于从主题炒作向基本面驱动过渡的关键阶段。核心驱动力来自AI大模型对算力的持续需求、GPU硬件设计的潜在变革(如插槽化)以及国内厂商在特定领域的突破,未来潜力在于国产替代加速和新应用场景(如机器人、边缘计算)的拓展,但需警惕需求放缓和技术壁垒带来的挑战。</p>
|
||
</div>
|
||
|
||
<div class="row mt-4">
|
||
<div class="col-md-4 mb-3">
|
||
<div class="card h-100">
|
||
<div class="card-header">
|
||
<h5 class="mb-0"><i class="bi bi-lightning-charge"></i> 核心驱动力</h5>
|
||
</div>
|
||
<div class="card-body">
|
||
<ul class="list-unstyled">
|
||
<li><i class="bi bi-check-circle text-success"></i> AI大模型算力需求爆发</li>
|
||
<li><i class="bi bi-check-circle text-success"></i> GPU硬件设计潜在变革</li>
|
||
<li><i class="bi bi-check-circle text-success"></i> 国产替代加速</li>
|
||
<li><i class="bi bi-check-circle text-success"></i> 应用场景拓展</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<div class="col-md-4 mb-3">
|
||
<div class="card h-100">
|
||
<div class="card-header">
|
||
<h5 class="mb-0"><i class="bi bi-thermometer-half"></i> 市场热度</h5>
|
||
</div>
|
||
<div class="card-body">
|
||
<ul class="list-unstyled">
|
||
<li><i class="bi bi-eye text-info"></i> 市场关注度高</li>
|
||
<li><i class="bi bi-exclamation-triangle text-warning"></i> 情绪存在分歧</li>
|
||
<li><i class="bi bi-graph-up text-success"></i> 乐观:长期增长逻辑</li>
|
||
<li><i class="bi bi-graph-down text-danger"></i> 谨慎:需求放缓</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<div class="col-md-4 mb-3">
|
||
<div class="card h-100">
|
||
<div class="card-header">
|
||
<h5 class="mb-0"><i class="bi bi-compass"></i> 预期差</h5>
|
||
</div>
|
||
<div class="card-body">
|
||
<ul class="list-unstyled">
|
||
<li><i class="bi bi-arrow-left-right text-primary"></i> 技术差距被高估</li>
|
||
<li><i class="bi bi-arrow-left-right text-primary"></i> 需求增长被低估</li>
|
||
<li><i class="bi bi-arrow-left-right text-primary"></i> 技术变革被忽视</li>
|
||
<li><i class="bi bi-arrow-left-right text-primary"></i> 生态建设被低估</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</section>
|
||
|
||
<!-- Timeline -->
|
||
<section id="timeline" class="mb-5">
|
||
<h2 class="section-title">关键催化事件时间轴</h2>
|
||
<div class="timeline">
|
||
<div class="timeline-item">
|
||
<div class="timeline-date">2023年初</div>
|
||
<div class="timeline-content">
|
||
<h5>ChatGPT引爆全球AI热潮</h5>
|
||
<p>ChatGPT引爆全球AI热潮,GPU算力需求激增,英伟达股价开始大幅上涨</p>
|
||
</div>
|
||
</div>
|
||
<div class="timeline-item">
|
||
<div class="timeline-date">2023年3-4月</div>
|
||
<div class="timeline-content">
|
||
<h5>美国实施高端GPU出口限制</h5>
|
||
<p>美国对华实施高端GPU出口限制,国内GPU产业链企业密集路演,展示国产GPU进展</p>
|
||
</div>
|
||
</div>
|
||
<div class="timeline-item">
|
||
<div class="timeline-date">2023年11月</div>
|
||
<div class="timeline-content">
|
||
<h5>木樨路演</h5>
|
||
<p>国产GPU创业公司木樨路演,介绍N/C/G全场景产品线规划,引发市场对国产GPU技术突破的关注</p>
|
||
</div>
|
||
</div>
|
||
<div class="timeline-item">
|
||
<div class="timeline-date">2024年9月</div>
|
||
<div class="timeline-content">
|
||
<h5>野村证券发布GPU插槽分析</h5>
|
||
<p>野村证券发布AI GPU插槽(Socket)市场潜力分析,预测Nvidia可能在2025年考虑为部分AI GPU采用插槽</p>
|
||
</div>
|
||
</div>
|
||
<div class="timeline-item">
|
||
<div class="timeline-date">2024年10月</div>
|
||
<div class="timeline-content">
|
||
<h5>国内算力租赁市场分析</h5>
|
||
<p>国内GPU算力租赁市场分析显示"需求放缓、国产替代加速"特点,国内算力机架增长仅5%-6%</p>
|
||
</div>
|
||
</div>
|
||
<div class="timeline-item">
|
||
<div class="timeline-date">2025年3月</div>
|
||
<div class="timeline-content">
|
||
<h5>GTC大会</h5>
|
||
<p>GTC大会预计发布GH200新品,单卡算力增长超过50%,中国企业(广和通、麦格米特等)参与度提高</p>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</section>
|
||
|
||
<!-- Core Logic -->
|
||
<section id="logic" class="mb-5">
|
||
<h2 class="section-title">概念的核心逻辑与市场认知</h2>
|
||
|
||
<div class="row mb-4">
|
||
<div class="col-md-6">
|
||
<div class="card h-100">
|
||
<div class="card-body">
|
||
<h5 class="card-title"><i class="bi bi-lightning-charge-fill text-primary"></i> 核心驱动力</h5>
|
||
<div class="mb-3">
|
||
<h6>AI大模型带来的算力需求爆发</h6>
|
||
<p class="small">以1750亿参数大模型为例,单次训练需30天,年可训练12次。若100个训练模型需求,拉动AI服务器出货量约<strong>9.6%</strong>。推理侧需求更大:谷歌级文字应用,100个推理需求可拉动AI服务器出货量约<strong>600%</strong>。</p>
|
||
</div>
|
||
<div class="mb-3">
|
||
<h6>GPU硬件设计的潜在变革</h6>
|
||
<p class="small">野村证券预测,Nvidia可能在2025年考虑为部分AI GPU采用插槽,以提高制造良率并降低"故障成本"。2025/26财年GPU插槽和CAMM连接器的综合TAM预计将达到<strong>960万/3100万美元</strong>。</p>
|
||
</div>
|
||
<div>
|
||
<h6>国产替代加速</h6>
|
||
<p class="small">美国对华高端GPU出口限制,促使国内市场加速国产GPU替代进程。华为昇腾910B单精度性能约为H100的<strong>60%</strong>,海光信息GPU性能与英伟达A100相当。</p>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<div class="col-md-6">
|
||
<div class="card h-100">
|
||
<div class="card-body">
|
||
<h5 class="card-title"><i class="bi bi-people-fill text-info"></i> 市场热度与情绪</h5>
|
||
<div class="mb-3">
|
||
<h6>市场关注度高</h6>
|
||
<p class="small">从新闻数据的密集度和路演数据的丰富性可以看出,GPU概念股受到市场高度关注。关联个股数量众多,涵盖GPU芯片设计、服务器制造、配套零部件等多个环节。</p>
|
||
</div>
|
||
<div class="mb-3">
|
||
<h6>情绪存在分歧</h6>
|
||
<p class="small">乐观方面:看好AI大模型带来的持续算力需求、国产替代加速、新应用场景拓展。谨慎方面:担忧国内算力需求增长放缓(2024年上半年国内算力机架增长仅<strong>5%-6%</strong>)。</p>
|
||
</div>
|
||
<div>
|
||
<h6>预期分化</h6>
|
||
<p class="small">对国际巨头(如英伟达):看好其技术优势和市场份额,但担忧增长放缓(2024年第二季度同比增速仅约<strong>16%</strong>)。对国内厂商:看好国产替代机遇,但担忧技术差距和生态建设不足。</p>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<div class="card">
|
||
<div class="card-body">
|
||
<h5 class="card-title"><i class="bi bi-graph-up-arrow text-success"></i> 预期差分析</h5>
|
||
<div class="row">
|
||
<div class="col-md-6 mb-3">
|
||
<div class="border-start border-3 border-primary ps-3">
|
||
<h6>技术差距的预期差</h6>
|
||
<p class="small">市场普遍认为国内GPU技术与国际巨头差距巨大,但路演数据显示,海光信息GPU性能与英伟达A100相当,华为昇腾910B单精度性能约为H100的60%。这种差距虽然在高端市场仍明显,但在中低端市场已经可以满足部分需求。</p>
|
||
</div>
|
||
</div>
|
||
<div class="col-md-6 mb-3">
|
||
<div class="border-start border-3 border-warning ps-3">
|
||
<h6>需求增长的预期差</h6>
|
||
<p class="small">研报和新闻强调AI大模型带来的算力需求爆发,但路演数据显示2024年上半年国内算力机架增长仅5%-6%,远低于去年25%的增速。这种需求放缓可能被市场低估,尤其是对国内GPU厂商的影响。</p>
|
||
</div>
|
||
</div>
|
||
<div class="col-md-6 mb-3">
|
||
<div class="border-start border-3 border-info ps-3">
|
||
<h6>技术变革的预期差</h6>
|
||
<p class="small">市场关注GPU算力的提升,但可能忽视了GPU硬件设计的潜在变革(如插槽化)和无矩阵计算算法等颠覆性技术。路演数据显示,6月18日论文提出无矩阵计算算法,可能大幅降低大型模型对算力的需求。</p>
|
||
</div>
|
||
</div>
|
||
<div class="col-md-6 mb-3">
|
||
<div class="border-start border-3 border-success ps-3">
|
||
<h6>生态建设的预期差</h6>
|
||
<p class="small">市场普遍认为CUDA生态是英伟达的核心壁垒,国内厂商难以突破。但路演数据显示,木樨等国内厂商通过兼容CUDA生态快速获取市场,目标2024年Q2实现生态友好衔接。这种"兼容+自有"的生态建设策略可能被市场低估。</p>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</section>
|
||
|
||
<!-- Catalysts -->
|
||
<section id="catalyst" class="mb-5">
|
||
<h2 class="section-title">关键催化剂与未来发展路径</h2>
|
||
|
||
<div class="row mb-4">
|
||
<div class="col-md-6">
|
||
<div class="card h-100">
|
||
<div class="card-header">
|
||
<h5 class="mb-0"><i class="bi bi-calendar-event"></i> 近期催化剂</h5>
|
||
</div>
|
||
<div class="card-body">
|
||
<div class="mb-3">
|
||
<h6><i class="bi bi-star-fill text-warning"></i> GTC大会(2025年3月)</h6>
|
||
<p class="small">预计发布新产品GH200,单卡算力预计增长超过<strong>50%</strong>,配备C叉8网卡和1.6T光模块。中国企业(如广和通、麦格米特等)参与度提高,可能带来合作机会。</p>
|
||
</div>
|
||
<div class="mb-3">
|
||
<h6><i class="bi bi-star-fill text-warning"></i> 国产GPU新品发布</h6>
|
||
<p class="small">木樨C系列预计2024年Q1正式商用,G系列预计2025年Q1/Q2商用。木樨布局三条GPU产品线:N系列(推理专用)、C系列(训练+推理全能型)、G系列(渲染全能型)。</p>
|
||
</div>
|
||
<div>
|
||
<h6><i class="bi bi-star-fill text-warning"></i> AI GPU插槽化进展</h6>
|
||
<p class="small">野村证券预测Nvidia可能在2025年考虑为部分AI GPU采用插槽,以提高制造良率并降低"故障成本"。相关供应链企业(如插槽、连接器制造商)可能受益。</p>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<div class="col-md-6">
|
||
<div class="card h-100">
|
||
<div class="card-header">
|
||
<h5 class="mb-0"><i class="bi bi-roads"></i> 长期发展路径</h5>
|
||
</div>
|
||
<div class="card-body">
|
||
<div class="mb-3">
|
||
<h6><i class="bi bi-cpu text-primary"></i> 技术演进路径</h6>
|
||
<p class="small">短期(1-2年):提升单卡算力,缩小与国际巨头的差距;优化能效比;兼容CUDA生态降低迁移成本。中期(2-3年):构建自有生态;开发专用GPU。长期(3-5年):实现技术领先;开发颠覆性计算架构。</p>
|
||
</div>
|
||
<div class="mb-3">
|
||
<h6><i class="bi bi-globe text-success"></i> 市场拓展路径</h6>
|
||
<p class="small">短期:聚焦国内市场,尤其是政府、国企等对国产化要求高的领域。中期:拓展至企业级市场,如互联网、金融、医疗等。长期:进军国际市场,与国际巨头直接竞争。</p>
|
||
</div>
|
||
<div>
|
||
<h6><i class="bi bi-diagram-3 text-info"></i> 产业链成熟路径</h6>
|
||
<p class="small">短期:完善GPU芯片设计能力;建立初步的软件生态。中期:形成完整的GPU产业链;建立成熟的软件生态。长期:形成具有国际竞争力的GPU产业集群;引领技术标准制定。</p>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</section>
|
||
|
||
<!-- Industry Chain -->
|
||
<section class="mb-5">
|
||
<h2 class="section-title">产业链与核心公司</h2>
|
||
|
||
<div class="industry-chain">
|
||
<div class="chain-item">
|
||
<div class="chain-icon">
|
||
<i class="bi bi-cpu"></i>
|
||
</div>
|
||
<h5>上游</h5>
|
||
<p>GPU芯片设计</p>
|
||
<small>英伟达、AMD、华为昇腾、海光信息、木樨等</small>
|
||
</div>
|
||
<div class="chain-item">
|
||
<div class="chain-icon">
|
||
<i class="bi bi-server"></i>
|
||
</div>
|
||
<h5>中游</h5>
|
||
<p>GPU服务器与系统集成</p>
|
||
<small>浪潮信息、中科曙光、太极股份等</small>
|
||
</div>
|
||
<div class="chain-item">
|
||
<div class="chain-icon">
|
||
<i class="bi bi-cloud"></i>
|
||
</div>
|
||
<h5>下游</h5>
|
||
<p>应用与服务</p>
|
||
<small>优刻得、广安爱众等</small>
|
||
</div>
|
||
<div class="chain-item">
|
||
<div class="chain-icon">
|
||
<i class="bi bi-gear"></i>
|
||
</div>
|
||
<h5>配套</h5>
|
||
<p>散热、封装、PCB等</p>
|
||
<small>鸿富瀚、长电科技、深南电路等</small>
|
||
</div>
|
||
</div>
|
||
</section>
|
||
|
||
<!-- Stock Data -->
|
||
<section id="stocks" class="mb-5">
|
||
<h2 class="section-title">GPU概念股数据</h2>
|
||
|
||
<div class="stock-table">
|
||
<div class="table-responsive">
|
||
<table class="table table-hover mb-0">
|
||
<thead>
|
||
<tr>
|
||
<th>股票名称</th>
|
||
<th>分类</th>
|
||
<th>项目</th>
|
||
<th>产业链</th>
|
||
<th>关联原因</th>
|
||
</tr>
|
||
</thead>
|
||
<tbody>
|
||
<tr>
|
||
<td><strong>天普股份</strong></td>
|
||
<td><span class="badge bg-primary">拟入主</span></td>
|
||
<td>控制权变更</td>
|
||
<td><span class="badge-chain badge-gpu-chip">GPU芯片</span></td>
|
||
<td>公司实控人尤建义筹划控制权变更事项,增资完成后中吴芯英、海南芯慧合计持有天普50.01%股权</td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>科德教育</strong></td>
|
||
<td><span class="badge bg-info">参股</span></td>
|
||
<td>中吴芯英</td>
|
||
<td><span class="badge-chain badge-ai-model">AI模型优化</span></td>
|
||
<td>公司参股的中吴芯英(5.9933%)将DeepSeek-V3系列模型作为重点优化对象</td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>艾布鲁</strong></td>
|
||
<td><span class="badge bg-info">参股</span></td>
|
||
<td>中吴芯英</td>
|
||
<td><span class="badge-chain badge-gpu-chip">GPU芯片</span></td>
|
||
<td>公司控股子公司杭州星罗中吴科技(持股50%)持有中吴芯英(杭州)科技7.0465%股份</td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>浙大网新</strong></td>
|
||
<td><span class="badge bg-info">参股</span></td>
|
||
<td>杭州网新花港</td>
|
||
<td><span class="badge-chain badge-gpu-investment">GPU投资</span></td>
|
||
<td>公司参与设立的杭州网新花港股权投资合伙企业持有中吴芯英0.5169%股权</td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>浙数文化</strong></td>
|
||
<td><span class="badge bg-info">参股</span></td>
|
||
<td>中吴芯英</td>
|
||
<td><span class="badge-chain badge-gpu-investment">GPU投资</span></td>
|
||
<td>公司作为有限合伙人认缴出资2000万元参与投资杭州鸣志创业投资合伙企业</td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>群兴玩具</strong></td>
|
||
<td><span class="badge bg-info">参股</span></td>
|
||
<td>中吴芯英</td>
|
||
<td><span class="badge-chain badge-gpu-chip">GPU芯片</span></td>
|
||
<td>子公司杭州图灵和中吴芯英展开战略合作,有助于加速包括V-Gen在内的公司各类大模型的落地</td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>广安爱众</strong></td>
|
||
<td><span class="badge bg-success">合作</span></td>
|
||
<td>重庆亿众</td>
|
||
<td><span class="badge-chain badge-liquid-cooling">液冷服务器</span></td>
|
||
<td>参股孙公司重庆亿众(持股20%)联合中吴芯英共建丝绸云谷项目,提供芯汇能液冷智能柜</td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>太极股份</strong></td>
|
||
<td><span class="badge bg-success">合作</span></td>
|
||
<td>天津移动TPU智算中心</td>
|
||
<td><span class="badge-chain badge-gpu-chip">GPU芯片</span></td>
|
||
<td>2025年7月28日,由中吴芯英与太极股份联合参与的天津移动TPU智算中心正式点亮</td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>和而泰</strong></td>
|
||
<td><span class="badge bg-success">合作</span></td>
|
||
<td>摩尔线程</td>
|
||
<td><span class="badge-chain badge-gpu-chip">GPU芯片</span></td>
|
||
<td>公司直接持股摩尔线程1.244%,摩尔第四代GPU芯片增加了FP8精度支持,大幅提升AI算力</td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>联美控股</strong></td>
|
||
<td><span class="badge bg-secondary">摩尔线程</span></td>
|
||
<td>摩尔线程</td>
|
||
<td><span class="badge-chain badge-gpu-chip">GPU芯片</span></td>
|
||
<td>子公司拉萨联虹对摩尔线程股权投资,初始投资成本为人民币1亿元</td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>ST华通</strong></td>
|
||
<td><span class="badge bg-secondary">摩尔线程</span></td>
|
||
<td>摩尔线程</td>
|
||
<td><span class="badge-chain badge-gpu-chip">GPU芯片</span></td>
|
||
<td>公司及旗下的产业基金少数股权投资了摩尔线程</td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>盈趣科技</strong></td>
|
||
<td><span class="badge bg-secondary">摩尔线程</span></td>
|
||
<td>摩尔线程</td>
|
||
<td><span class="badge-chain badge-gpu-chip">GPU芯片</span></td>
|
||
<td>公司基于战略布局和多元化发展的考虑投资摩尔线程</td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>圣元环保</strong></td>
|
||
<td><span class="badge bg-secondary">摩尔线程</span></td>
|
||
<td>摩尔线程</td>
|
||
<td><span class="badge-chain badge-gpu-chip">GPU芯片</span></td>
|
||
<td>公司通过认购中原前海的基金份额3亿元人民币间接参与了摩尔线程的投资</td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>初灵信息</strong></td>
|
||
<td><span class="badge bg-secondary">摩尔线程</span></td>
|
||
<td>摩尔线程</td>
|
||
<td><span class="badge-chain badge-gpu-chip">GPU芯片</span></td>
|
||
<td>公司所认购的北京中移数字新经济产业基金为摩尔线程的参股方</td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>旗天科技</strong></td>
|
||
<td><span class="badge bg-warning">七彩虹</span></td>
|
||
<td>七彩虹</td>
|
||
<td><span class="badge-chain badge-graphics-card">显卡</span></td>
|
||
<td>2024年7月25日拟通过发行股票变更公司控制权,控股股东变更为七彩虹皓悦</td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>鸿富瀚</strong></td>
|
||
<td><span class="badge bg-warning">七彩虹</span></td>
|
||
<td>显卡散热模组</td>
|
||
<td><span class="badge-chain badge-gpu-hardware">GPU硬件</span></td>
|
||
<td>公司热传事业部有生产显卡散热模组,显卡的客户主要是七彩虹等</td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>中新集团</strong></td>
|
||
<td><span class="badge bg-info">参股</span></td>
|
||
<td>苏州元禾璞华智芯</td>
|
||
<td><span class="badge-chain badge-gpu-chip">GPU芯片</span></td>
|
||
<td>公司通过参股苏州元禾璞华智芯(公司对该基金的份额占比为3.5%)间接持有昆仑芯约0.35%股权</td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>国芯科技</strong></td>
|
||
<td><span class="badge bg-success">合作</span></td>
|
||
<td>战略合作</td>
|
||
<td><span class="badge-chain badge-gpu-chip">GPU芯片</span></td>
|
||
<td>与昆仑芯签署了《战略合作框架协议》,双方将展开在边缘AI计算、车规功能安全SoC等技术领域的合作</td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>超讯通信</strong></td>
|
||
<td><span class="badge bg-success">合作</span></td>
|
||
<td>沐曦智能</td>
|
||
<td><span class="badge-chain badge-gpu-chip">GPU芯片</span></td>
|
||
<td>特定行业总代理商,拟与沐曦等共同投资设立沐曦智能(公司持股56%),未来主要承担芯片的技术服务和服务器整机生产</td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>迈信林</strong></td>
|
||
<td><span class="badge bg-success">合作</span></td>
|
||
<td>GPU模组</td>
|
||
<td><span class="badge-chain badge-gpu-hardware">GPU硬件</span></td>
|
||
<td>代理销售沐曦的GPU模组</td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>优刻得</strong></td>
|
||
<td><span class="badge bg-success">合作</span></td>
|
||
<td>AI应用</td>
|
||
<td><span class="badge-chain badge-ai-application">AI应用</span></td>
|
||
<td>与沐曦合作,将围绕云计算、智慧城市、GPU芯片研发和应用,此前比如量化交易、部分AI客户需要大量的A100、A800</td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
</div>
|
||
</div>
|
||
</section>
|
||
|
||
<!-- Risks -->
|
||
<section id="risks" class="mb-5">
|
||
<h2 class="section-title">潜在风险与挑战</h2>
|
||
|
||
<div class="row">
|
||
<div class="col-md-4 mb-3">
|
||
<div class="card h-100 border-danger">
|
||
<div class="card-header bg-danger text-white">
|
||
<h5 class="mb-0"><i class="bi bi-exclamation-triangle"></i> 技术风险</h5>
|
||
</div>
|
||
<div class="card-body">
|
||
<ul class="list-unstyled">
|
||
<li class="mb-2"><i class="bi bi-dash-circle text-danger"></i> <strong>技术差距风险</strong><br>
|
||
<small>国内GPU技术与国际巨头仍存在明显差距,如华为昇腾910B单精度性能约为H100的60%</small>
|
||
</li>
|
||
<li class="mb-2"><i class="bi bi-dash-circle text-danger"></i> <strong>技术变革风险</strong><br>
|
||
<small>无矩阵计算算法等颠覆性技术可能大幅降低大型模型对算力的需求</small>
|
||
</li>
|
||
<li><i class="bi bi-dash-circle text-danger"></i> <strong>生态建设风险</strong><br>
|
||
<small>CUDA生态是英伟达的核心壁垒,国内厂商建设自有生态面临巨大挑战</small>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<div class="col-md-4 mb-3">
|
||
<div class="card h-100 border-warning">
|
||
<div class="card-header bg-warning text-dark">
|
||
<h5 class="mb-0"><i class="bi bi-currency-dollar"></i> 商业化风险</h5>
|
||
</div>
|
||
<div class="card-body">
|
||
<ul class="list-unstyled">
|
||
<li class="mb-2"><i class="bi bi-dash-circle text-warning"></i> <strong>需求放缓风险</strong><br>
|
||
<small>2024年上半年国内算力机架增长仅5%-6%,远低于去年25%的增速</small>
|
||
</li>
|
||
<li class="mb-2"><i class="bi bi-dash-circle text-warning"></i> <strong>成本风险</strong><br>
|
||
<small>GPU价格高昂,如英伟达H100 GPU价格约为3万美金,可能限制普及</small>
|
||
</li>
|
||
<li><i class="bi bi-dash-circle text-warning"></i> <strong>应用场景风险</strong><br>
|
||
<small>机器人等新应用场景的商业化前景尚不明确,需要时间验证</small>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<div class="col-md-4 mb-3">
|
||
<div class="card h-100 border-info">
|
||
<div class="card-header bg-info text-white">
|
||
<h5 class="mb-0"><i class="bi bi-shield-exclamation"></i> 政策与竞争风险</h5>
|
||
</div>
|
||
<div class="card-body">
|
||
<ul class="list-unstyled">
|
||
<li class="mb-2"><i class="bi bi-dash-circle text-info"></i> <strong>出口管制风险</strong><br>
|
||
<small>美国对华高端GPU出口限制可能进一步升级,影响国内获取先进GPU技术</small>
|
||
</li>
|
||
<li class="mb-2"><i class="bi bi-dash-circle text-info"></i> <strong>竞争加剧风险</strong><br>
|
||
<small>国际巨头持续投入研发,国内GPU厂商数量增多,竞争加剧</small>
|
||
</li>
|
||
<li><i class="bi bi-dash-circle text-info"></i> <strong>政策支持风险</strong><br>
|
||
<small>政策力度和持续性存在不确定性,可能影响国产GPU的替代进程</small>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</section>
|
||
|
||
<!-- Investment Insights -->
|
||
<section class="mb-5">
|
||
<h2 class="section-title">投资启示</h2>
|
||
|
||
<div class="card">
|
||
<div class="card-body">
|
||
<h5 class="card-title"><i class="bi bi-lightbulb text-warning"></i> 综合结论</h5>
|
||
<p class="card-text">GPU概念股正处于技术变革与国产替代的双重驱动下,当前处于从主题炒作向基本面驱动过渡的关键阶段。一方面,AI大模型带来的算力需求、GPU硬件设计的潜在变革以及新应用场景的拓展为GPU市场提供了长期增长动力;另一方面,国内算力需求增长放缓、国际巨头技术壁垒高以及国产GPU生态建设不足等因素也带来了挑战。</p>
|
||
|
||
<hr>
|
||
|
||
<div class="row">
|
||
<div class="col-md-6">
|
||
<h6><i class="bi bi-star-fill text-success"></i> 最具投资价值的细分环节</h6>
|
||
<ul class="list-unstyled">
|
||
<li><i class="bi bi-check-circle text-success"></i> <strong>GPU芯片设计</strong>:布局全场景产品线、兼容CUDA生态的国内厂商</li>
|
||
<li><i class="bi bi-check-circle text-success"></i> <strong>GPU配套产业链</strong>:1.6T光模块、散热模组、先进封装等</li>
|
||
<li><i class="bi bi-check-circle text-success"></i> <strong>GPU应用与服务</strong>:算力租赁、行业解决方案等</li>
|
||
</ul>
|
||
</div>
|
||
<div class="col-md-6">
|
||
<h6><i class="bi bi-graph-up text-primary"></i> 投资策略建议</h6>
|
||
<ul class="list-unstyled">
|
||
<li><i class="bi bi-arrow-right-circle text-primary"></i> <strong>长期布局</strong>:GPU是AI时代的核心基础设施,长期增长逻辑清晰</li>
|
||
<li><i class="bi bi-arrow-right-circle text-primary"></i> <strong>差异化配置</strong>:国际巨头与国内厂商、不同细分领域差异配置</li>
|
||
<li><i class="bi bi-arrow-right-circle text-primary"></i> <strong>关注催化剂</strong>:GTC大会、国产GPU新品发布等事件</li>
|
||
<li><i class="bi bi-arrow-right-circle text-primary"></i> <strong>风险控制</strong>:控制仓位,设置止损点,避免过度追高</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</section>
|
||
</div>
|
||
|
||
<!-- Footer -->
|
||
<footer class="footer">
|
||
<div class="container">
|
||
<div class="row">
|
||
<div class="col-md-6">
|
||
<h5>GPU概念股分析</h5>
|
||
<p>AI时代的算力革命与投资机遇</p>
|
||
</div>
|
||
<div class="col-md-6 text-md-end">
|
||
<p class="mb-0">© 2025 GPU概念股分析. 仅供参考,不构成投资建议.</p>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</footer>
|
||
|
||
<!-- Bootstrap JS -->
|
||
<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0/dist/js/bootstrap.bundle.min.js"></script>
|
||
<!-- Custom JS -->
|
||
<script>
|
||
// Smooth scrolling for navigation links
|
||
document.querySelectorAll('a[href^="#"]').forEach(anchor => {
|
||
anchor.addEventListener('click', function (e) {
|
||
e.preventDefault();
|
||
const target = document.querySelector(this.getAttribute('href'));
|
||
if (target) {
|
||
window.scrollTo({
|
||
top: target.offsetTop - 70,
|
||
behavior: 'smooth'
|
||
});
|
||
}
|
||
});
|
||
});
|
||
|
||
// Add active class to navigation items on scroll
|
||
window.addEventListener('scroll', () => {
|
||
let current = '';
|
||
const sections = document.querySelectorAll('section[id]');
|
||
|
||
sections.forEach(section => {
|
||
const sectionTop = section.offsetTop;
|
||
const sectionHeight = section.clientHeight;
|
||
if (scrollY >= (sectionTop - 100)) {
|
||
current = section.getAttribute('id');
|
||
}
|
||
});
|
||
|
||
document.querySelectorAll('.navbar-nav a').forEach(link => {
|
||
link.classList.remove('active');
|
||
if (link.getAttribute('href').slice(1) === current) {
|
||
link.classList.add('active');
|
||
}
|
||
});
|
||
});
|
||
</script>
|
||
</body>
|
||
</html>
|