Compare commits

..

6 Commits

Author SHA1 Message Date
f5023d9ce6 update pay ui 2025-12-17 16:51:42 +08:00
c589516633 update pay ui 2025-12-17 16:46:06 +08:00
c88f13db89 update pay ui 2025-12-17 16:20:27 +08:00
5804aa27c4 update pay ui 2025-12-17 16:15:14 +08:00
413e327a19 update pay ui 2025-12-17 15:12:26 +08:00
f9163b1228 update pay ui 2025-12-17 14:58:56 +08:00
4 changed files with 354 additions and 33 deletions

View File

@@ -1030,3 +1030,51 @@ async def get_stock_intraday_statistics(
except Exception as e:
logger.error(f"[ClickHouse] 日内统计失败: {e}", exc_info=True)
return {"success": False, "error": str(e)}
async def get_stock_code_by_name(stock_name: str) -> Dict[str, Any]:
"""
根据股票名称查询股票代码
Args:
stock_name: 股票名称(支持模糊匹配)
Returns:
匹配的股票列表,包含代码和名称
"""
pool = await get_pool()
async with pool.acquire() as conn:
async with conn.cursor(aiomysql.DictCursor) as cursor:
# 使用 LIKE 进行模糊匹配
query = """
SELECT DISTINCT
SECCODE as code,
SECNAME as name,
F030V as industry
FROM ea_baseinfo
WHERE SECNAME LIKE %s
OR SECNAME = %s
ORDER BY
CASE WHEN SECNAME = %s THEN 0 ELSE 1 END,
SECCODE
LIMIT 10
"""
# 精确匹配和模糊匹配
like_pattern = f"%{stock_name}%"
await cursor.execute(query, (like_pattern, stock_name, stock_name))
results = await cursor.fetchall()
if not results:
return {
"success": False,
"error": f"未找到名称包含 '{stock_name}' 的股票"
}
return {
"success": True,
"data": results,
"count": len(results)
}

View File

@@ -314,33 +314,17 @@ TOOLS: List[ToolDefinition] = [
),
ToolDefinition(
name="search_concepts",
description="搜索股票概念板块,支持按涨跌幅、股票数量排序。返回概念详情及相关股票列表。",
description="搜索股票概念板块,返回概念详情及相关股票列表。",
parameters={
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "搜索关键词,例如:'新能源''人工智能'"
},
"size": {
"type": "integer",
"description": "每页结果数量",
"default": 10
},
"page": {
"type": "integer",
"description": "页码",
"default": 1
},
"sort_by": {
"type": "string",
"description": "排序方式change_pct(涨跌幅), _score(相关度), stock_count(股票数), concept_name(名称)",
"enum": ["change_pct", "_score", "stock_count", "concept_name"],
"default": "change_pct"
"description": "搜索关键词,例如:'新能源''人工智能''商业航天'"
},
"trade_date": {
"type": "string",
"description": "交易日期格式YYYY-MM-DD默认最新"
"description": "交易日期格式YYYY-MM-DD不传则使用今天"
}
},
"required": ["query"]
@@ -511,6 +495,20 @@ TOOLS: List[ToolDefinition] = [
"required": ["query"]
}
),
ToolDefinition(
name="get_stock_code_by_name",
description="根据股票名称查询股票代码,支持模糊匹配。当只知道股票名称不知道代码时使用。",
parameters={
"type": "object",
"properties": {
"stock_name": {
"type": "string",
"description": "股票名称,例如:'贵州茅台''舒泰神''比亚迪'"
}
},
"required": ["stock_name"]
}
),
ToolDefinition(
name="get_stock_basic_info",
description="获取股票基本信息,包括公司名称、行业、地址、主营业务、高管等基础数据。",
@@ -1469,18 +1467,27 @@ async def handle_search_roadshows(args: Dict[str, Any]) -> Any:
return response.json()
async def handle_search_concepts(args: Dict[str, Any]) -> Any:
"""处理概念搜索"""
"""处理概念搜索
参数写死size=12, page=1, sort_by="_score"
trade_date 如果没传则使用今天的日期
"""
from datetime import date
# trade_date 默认今天
trade_date = args.get("trade_date") or date.today().strftime("%Y-%m-%d")
payload = {
"query": args["query"],
"size": args.get("size", 10),
"page": args.get("page", 1),
"size": 12, # 写死
"page": 1, # 写死
"sort_by": "_score", # 写死,按相关度排序
"trade_date": trade_date,
"search_size": 100,
"sort_by": args.get("sort_by", "change_pct"),
"use_knn": True
}
if args.get("trade_date"):
payload["trade_date"] = args["trade_date"]
logger.info(f"[search_concepts] 请求参数: {payload}")
response = await HTTP_CLIENT.post(f"{ServiceEndpoints.CONCEPT_API}/search", json=payload)
response.raise_for_status()
return response.json()
@@ -1501,7 +1508,11 @@ async def handle_get_concept_details(args: Dict[str, Any]) -> Any:
async def handle_get_stock_concepts(args: Dict[str, Any]) -> Any:
"""处理股票概念获取"""
stock_code = args["stock_code"]
# 兼容不同的参数名: stock_code, seccode, code
stock_code = args.get("stock_code") or args.get("seccode") or args.get("code")
if not stock_code:
raise ValueError("缺少股票代码参数 (stock_code/seccode/code)")
params = {
"size": args.get("size", 50),
"sort_by": args.get("sort_by", "stock_count"),
@@ -1510,6 +1521,7 @@ async def handle_get_stock_concepts(args: Dict[str, Any]) -> Any:
if args.get("trade_date"):
params["trade_date"] = args["trade_date"]
logger.info(f"[get_stock_concepts] 查询股票 {stock_code} 的概念")
response = await HTTP_CLIENT.get(
f"{ServiceEndpoints.CONCEPT_API}/stock/{stock_code}/concepts",
params=params
@@ -1580,9 +1592,24 @@ async def handle_search_research_reports(args: Dict[str, Any]) -> Any:
response.raise_for_status()
return response.json()
async def handle_get_stock_code_by_name(args: Dict[str, Any]) -> Any:
"""根据股票名称查询股票代码"""
# 兼容不同的参数名: stock_name, name
stock_name = args.get("stock_name") or args.get("name")
if not stock_name:
return {"success": False, "error": "缺少股票名称参数 (stock_name/name)"}
logger.info(f"[get_stock_code_by_name] 查询股票名称: {stock_name}")
result = await db.get_stock_code_by_name(stock_name)
return result
async def handle_get_stock_basic_info(args: Dict[str, Any]) -> Any:
"""处理股票基本信息查询"""
seccode = args["seccode"]
# 兼容不同的参数名: seccode, stock_code, code
seccode = args.get("seccode") or args.get("stock_code") or args.get("code")
if not seccode:
return {"success": False, "error": "缺少股票代码参数 (seccode/stock_code/code)"}
result = await db.get_stock_basic_info(seccode)
if result:
return {"success": True, "data": result}
@@ -1810,6 +1837,7 @@ TOOL_HANDLERS = {
"search_limit_up_stocks": handle_search_limit_up_stocks,
"get_daily_stock_analysis": handle_get_daily_stock_analysis,
"search_research_reports": handle_search_research_reports,
"get_stock_code_by_name": handle_get_stock_code_by_name,
"get_stock_basic_info": handle_get_stock_basic_info,
"get_stock_financial_index": handle_get_stock_financial_index,
"get_stock_trade_data": handle_get_stock_trade_data,
@@ -2549,9 +2577,29 @@ A股交易时间: 上午 9:30-11:30下午 13:00-15:00
assistant_message = response.choices[0].message
logger.info(f"[Agent Stream] LLM 响应: finish_reason={response.choices[0].finish_reason}")
# 检查是否有工具调用
if assistant_message.tool_calls:
logger.info(f"[Agent Stream] 检测到 {len(assistant_message.tool_calls)} 个工具调用")
# 获取工具调用(优先使用原生 tool_calls其次解析文本格式
native_tool_calls = assistant_message.tool_calls or []
text_tool_calls = []
# 如果没有原生工具调用,尝试从文本内容中解析
if not native_tool_calls and assistant_message.content:
content = assistant_message.content
# 检查是否包含工具调用标记(包括 DSML 格式)
has_tool_markers = (
'<tool_call>' in content or
'```tool_call' in content or
'"tool":' in content or
'DSML' in content or # DeepSeek DSML 格式
'DSML' in content # 全角竖线版本
)
if has_tool_markers:
logger.info(f"[Agent Stream] 尝试从文本内容解析工具调用")
logger.info(f"[Agent Stream] 内容预览: {content[:500]}")
text_tool_calls = self._parse_text_tool_calls(content)
# 检查是否有工具调用(原生或文本格式)
if native_tool_calls:
logger.info(f"[Agent Stream] 检测到 {len(native_tool_calls)} 个原生工具调用")
# 将 assistant 消息添加到历史(包含 tool_calls
messages.append(assistant_message)
@@ -2564,7 +2612,7 @@ A股交易时间: 上午 9:30-11:30下午 13:00-15:00
"reasoning": "使用工具获取相关数据进行分析",
"steps": []
}
for tc in assistant_message.tool_calls:
for tc in native_tool_calls:
try:
args = json.loads(tc.function.arguments) if tc.function.arguments else {}
except:
@@ -2576,10 +2624,10 @@ A股交易时间: 上午 9:30-11:30下午 13:00-15:00
})
yield self._format_sse("plan", plan_data)
yield self._format_sse("status", {"stage": "executing", "message": f"开始执行 {len(assistant_message.tool_calls)} 个工具调用"})
yield self._format_sse("status", {"stage": "executing", "message": f"开始执行 {len(native_tool_calls)} 个工具调用"})
# 执行每个工具调用
for tool_call in assistant_message.tool_calls:
for tool_call in native_tool_calls:
tool_name = tool_call.function.name
tool_call_id = tool_call.id
@@ -2682,6 +2730,120 @@ A股交易时间: 上午 9:30-11:30下午 13:00-15:00
logger.info(f"[Tool Call] ========== 工具调用结束 ==========")
step_index += 1
elif text_tool_calls:
# 处理文本格式的工具调用
logger.info(f"[Agent Stream] 检测到 {len(text_tool_calls)} 个文本格式工具调用")
# 将 assistant 消息添加到历史
messages.append({"role": "assistant", "content": assistant_message.content})
# 如果是第一次工具调用,发送计划事件
if step_index == 0:
plan_data = {
"goal": f"分析用户问题:{user_query[:50]}...",
"reasoning": "使用工具获取相关数据进行分析",
"steps": [
{"tool": tc["name"], "arguments": tc["arguments"], "reason": f"调用 {tc['name']}"}
for tc in text_tool_calls
]
}
yield self._format_sse("plan", plan_data)
yield self._format_sse("status", {"stage": "executing", "message": f"开始执行 {len(text_tool_calls)} 个工具调用"})
# 执行每个工具调用
for tc in text_tool_calls:
tool_name = tc["name"]
arguments = tc["arguments"]
tool_call_id = f"text_call_{step_index}_{tool_name}"
logger.info(f"[Tool Call] ========== 文本工具调用开始 ==========")
logger.info(f"[Tool Call] 工具名: {tool_name}")
logger.info(f"[Tool Call] 参数内容: {json.dumps(arguments, ensure_ascii=False)}")
# 发送步骤开始事件
yield self._format_sse("step_start", {
"step_index": step_index,
"tool": tool_name,
"arguments": arguments,
"reason": f"调用 {tool_name}",
})
start_time = datetime.now()
try:
# 特殊处理 summarize_news
if tool_name == "summarize_news":
data_arg = arguments.get("data", "")
if data_arg in ["前面的新闻数据", "前面收集的所有数据", ""]:
arguments["data"] = json.dumps(collected_data, ensure_ascii=False, indent=2)
# 执行工具
result = await self.execute_tool(tool_name, arguments, tool_handlers)
execution_time = (datetime.now() - start_time).total_seconds()
# 记录结果
step_result = StepResult(
step_index=step_index,
tool=tool_name,
arguments=arguments,
status="success",
result=result,
execution_time=execution_time,
)
step_results.append(step_result)
collected_data[f"step_{step_index+1}_{tool_name}"] = result
plan_steps.append({"tool": tool_name, "arguments": arguments, "reason": f"调用 {tool_name}"})
# 发送步骤完成事件
yield self._format_sse("step_complete", {
"step_index": step_index,
"tool": tool_name,
"status": "success",
"result": result,
"execution_time": execution_time,
})
# 将工具结果添加到消息历史(简化格式,因为模型可能不支持标准 tool 消息)
result_str = json.dumps(result, ensure_ascii=False) if isinstance(result, (dict, list)) else str(result)
messages.append({
"role": "user",
"content": f"[工具调用结果] {tool_name}: {result_str[:3000]}"
})
logger.info(f"[Tool Call] 执行成功,耗时 {execution_time:.2f}s")
except Exception as e:
execution_time = (datetime.now() - start_time).total_seconds()
error_msg = str(e)
step_result = StepResult(
step_index=step_index,
tool=tool_name,
arguments=arguments,
status="failed",
error=error_msg,
execution_time=execution_time,
)
step_results.append(step_result)
yield self._format_sse("step_complete", {
"step_index": step_index,
"tool": tool_name,
"status": "failed",
"error": error_msg,
"execution_time": execution_time,
})
messages.append({
"role": "user",
"content": f"[工具调用失败] {tool_name}: {error_msg}"
})
logger.error(f"[Tool Call] 执行失败: {error_msg}")
logger.info(f"[Tool Call] ========== 文本工具调用结束 ==========")
step_index += 1
else:
# 没有工具调用,模型生成了最终回复
logger.info(f"[Agent Stream] 模型生成最终回复")
@@ -2820,6 +2982,117 @@ A股交易时间: 上午 9:30-11:30下午 13:00-15:00
"""格式化 SSE 消息"""
return f"event: {event}\ndata: {json.dumps(data, ensure_ascii=False)}\n\n"
def _parse_text_tool_calls(self, content: str) -> List[Dict[str, Any]]:
"""
解析文本格式的工具调用
支持的格式:
1. <tool_call> <function=xxx> <parameter=yyy> value </parameter> </function> </tool_call>
2. ```tool_call\n{"name": "xxx", "arguments": {...}}\n```
3. DeepSeek DSML 格式: <DSMLfunction_calls> <DSMLinvoke name="xxx"> <DSMLparameter name="yyy" string="true">value</DSMLparameter> </DSMLinvoke> </DSMLfunction_calls>
返回: [{"name": "tool_name", "arguments": {...}}, ...]
"""
import re
tool_calls = []
# 格式1: <tool_call> 标签格式
# 例如: <tool_call> <function=get_stock_concepts> <parameter=seccode> 300274 </parameter> </function> </tool_call>
pattern1 = r'<tool_call>\s*<function=(\w+)>(.*?)</function>\s*</tool_call>'
matches1 = re.findall(pattern1, content, re.DOTALL)
for func_name, params_str in matches1:
arguments = {}
# 解析参数: <parameter=xxx> value </parameter>
param_pattern = r'<parameter=(\w+)>\s*(.*?)\s*</parameter>'
param_matches = re.findall(param_pattern, params_str, re.DOTALL)
for param_name, param_value in param_matches:
# 尝试解析 JSON 值,否则作为字符串
param_value = param_value.strip()
try:
arguments[param_name] = json.loads(param_value)
except:
arguments[param_name] = param_value
tool_calls.append({
"name": func_name,
"arguments": arguments
})
# 格式2: ```tool_call 代码块格式
pattern2 = r'```tool_call\s*\n?(.*?)\n?```'
matches2 = re.findall(pattern2, content, re.DOTALL)
for match in matches2:
try:
data = json.loads(match.strip())
if isinstance(data, dict) and "name" in data:
tool_calls.append({
"name": data["name"],
"arguments": data.get("arguments", {})
})
except:
pass
# 格式3: 直接 JSON 格式 {"tool": "xxx", "arguments": {...}}
pattern3 = r'\{\s*"tool"\s*:\s*"(\w+)"\s*,\s*"arguments"\s*:\s*(\{[^}]*\})\s*\}'
matches3 = re.findall(pattern3, content)
for tool_name, args_str in matches3:
try:
arguments = json.loads(args_str)
tool_calls.append({
"name": tool_name,
"arguments": arguments
})
except:
pass
# 格式4: DeepSeek DSML 格式(使用全角竖线
# <DSMLfunction_calls> <DSMLinvoke name="search_research_reports"> <DSMLparameter name="query" string="true">AI概念股</DSMLparameter> </DSMLinvoke> </DSMLfunction_calls>
# 注意:| 是全角字符
dsml_pattern = r'<[\|]DSML[\|]function_calls>(.*?)</[\|]DSML[\|]function_calls>'
dsml_matches = re.findall(dsml_pattern, content, re.DOTALL)
for dsml_content in dsml_matches:
# 解析 invoke 标签
invoke_pattern = r'<[\|]DSML[\|]invoke\s+name="(\w+)">(.*?)</[\|]DSML[\|]invoke>'
invoke_matches = re.findall(invoke_pattern, dsml_content, re.DOTALL)
for func_name, params_str in invoke_matches:
arguments = {}
# 解析参数: <DSMLparameter name="xxx" string="true/false">value</DSMLparameter>
param_pattern = r'<[\|]DSML[\|]parameter\s+name="(\w+)"\s+string="(true|false)">(.*?)</[\|]DSML[\|]parameter>'
param_matches = re.findall(param_pattern, params_str, re.DOTALL)
for param_name, is_string, param_value in param_matches:
param_value = param_value.strip()
if is_string == "false":
# 不是字符串,尝试解析为数字或 JSON
try:
arguments[param_name] = json.loads(param_value)
except:
# 尝试转为整数或浮点数
try:
arguments[param_name] = int(param_value)
except:
try:
arguments[param_name] = float(param_value)
except:
arguments[param_name] = param_value
else:
# 是字符串
arguments[param_name] = param_value
tool_calls.append({
"name": func_name,
"arguments": arguments
})
logger.info(f"[Text Tool Call] 解析到 {len(tool_calls)} 个工具调用: {tool_calls}")
return tool_calls
# 创建 Agent 实例(全局)
agent = MCPAgentIntegrated()